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Abstract

Automated software verification techniques, while widely successful, often suffer from

scalability issues due to state-space explosion. In both automated and manual verifi-

cation, modular approaches help scale verification by breaking verification problems

into several easier-to-solve subproblems. These subproblems often involve discover-

ing suitable invariants that can be used to help derive a proof that the entire system

meets the desired specification.

In this dissertation, I describe work toward developing modular automatic tech-

niques for software verification in which such invariants are discovered automatically.

These techniques notably involve exploiting the structure and syntax of both system

components and/or their specifications in order to find useful invariants for scaling

verification. I have developed techniques for several related kinds of verification prob-

lems: the verification of 𝑘-safety properties, the verification of safety properties for

general single-threaded interprocedural programs, and the verification of information-

flow security–a specific kind of 2-safety property.

For each of these verification problems, I have implemented the developed tech-

niques in a verification tool and compared the tool to existing state-of-the-art tools

for solving the verification problem. Experimental results demonstrate that the devel-

oped techniques help scale verification over existing state-of-the-art and allow more

verification problems to be solved automatically.
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Chapter 1

Introduction

There are a great many techniques and approaches for ensuring the correctness of

software systems, including those that fall within the categories of testing and formal

verification. Formal verification can be used to solve the software verification problem

of determining that a given program meets a given specification under all inputs. In

contrast, testing cannot in general provide guarantees about all possible inputs to the

system.

Formal verification provides guarantees of correctness by relying on finding proofs

that a system meets a given specification. Over the years, there have been many

efforts to apply formal verification to software systems. The techniques used in these

efforts vary greatly in the level of automation involved.

On the less automated side, users can operate proof assistants such as Coq [2] and

Agda [1] to help in the manual construction of a machine-checkable proof. While some

automation can be achieved through the use of tactics within a proof script or through

proof search, ultimately the user must decide when to apply the automation and must

contribute substantial manual effort. On the automated side, software model checking

techniques [98] employ algorithms that, with no user input, prove that a provided

program meets a provided specification. Successful automated verification techniques
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have relied on backend Satisfiability Modulo Theories (SMT) solvers [24] with great

success, encoding entire verification problems or their subproblems as SMT formulas

that can be solved by powerful backend solvers such as Z3 [61] or CVC4 [23]. Even

certain proof assistants like F* [147] have made extensive and successful use of SMT

solvers. Of course, fully automated efforts may fail because the software verification

problem is in general undecidable and, unlike in approaches in which the user is more

involved, there is a lack of human insight that could help for a particular program

and property.

Significant challenges in applying automated verification result from this lack of

human insight. One challenge in particular lies in the lack of information about how

to perform verification modularly, i.e., how to reduce the solving of a large verifi-

cation problem involving a complex piece of code into solving smaller verification

subproblems. Automated verification techniques, which often rely on backend SMT

solvers [24], require such a reduction in order to scale verification to larger programs.

A simple monolithic encoding of a verification problem as a single SMT solver query

is unlikely to yield a result from an SMT solver in a timely manner, if at all.

For automated tools that incorporate human insights, the generation of verifica-

tion subproblems can be performed under user guidance. For example, many tools al-

low or even require users to provide annotations that express program invariants [107],

which are additional properties about the program that the automated technique may

not be able to infer by itself. Ideally, these invariants should be able to be both easily

proved by the automated verifier and easily used by the verifier to prove that the

given specification holds. In other words, these invariants should allow the verifier to

solve two separate, smaller problems: (1) showing that the invariants hold and (2)

showing that the specification for the program holds given the invariants. While us-

ing human guidance is helpful for a modular verification approach and has led to the

successful application of verification to real-world software systems [87, 88], invariants
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that are both useful and easy to prove can be difficult for a user to generate. In fully

automated techniques that do not use such annotations, the automatic inference of

such invariants can present a significant challenge, but, if successful, can alleviate the

burden on the user to manually construct such invariants.

One successful approach for invariant inference has been based on the use of

syntax-guided synthesis (SyGuS) [8]. Given a grammar and a specification of a

property that a desired derivation of the grammar should satisfy, the problem of

syntax-guided synthesis is to find such a term that satisfies the specification. SyGuS

has been applied successfully to program synthesis for particular domains [8], where

derivations of the grammar are programs or program expressions and the specification

is that the program has a particular property, and to the synthesis of certain kinds

of invariants [72, 73, 74, 33, 154, 138, 78, 120, 10, 129], where terms of the grammar

are logical formulas and the specification is that the generated formula is, indeed, a

program invariant.

SyGuS-based techniques, while successfully applied to particular domains, also

face scalability limitations. As the number of terms in the grammar grows, so does the

search space that a SyGuS solver must explore. While smarter search heuristics [72,

73, 138, 129] and other techniques for pruning the search space exist to help scale

SyGuS techniques, the success of SyGuS still relies heavily on the careful design of

grammars that restrict the search space sufficiently that it can be explored but still

are expressive enough to contain the desired solutions to SyGuS problems. In general,

these techniques require human insight in the design of grammar templates, but they

require less human effort than would be required for creating the solution manually.

Furthermore, they can reuse the human effort (i.e., the grammar) for other problems

in the same domain; for a SyGuS-based synthesizer, the main human insight required

is the up-front identification of relevant pieces of syntax.
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In this dissertation, I present fully automated techniques for verification that lever-

age syntactic features of both programs and properties to perform effective automatic

decomposition of a verification problem into subproblems. The development of these

techniques are based on the insight that syntactic and structural features of programs

and properties capture, to some extent, human insights about the verification problem

being solved. In developing these techniques, I have targeted them to particular kinds

of verification problems whose instances share similar syntactic features that can be

leveraged. For example, one kind of verification problem I have considered involves

proving that programs exhibit certain 𝑘-safety properties, which are properties about

𝑘 runs of the same program.

The general approach employed in the development of these techniques involves

identifying scalability issues for verifying the kinds of verification problems being con-

sidered, identifying useful syntactic or structural features of the programs and prop-

erties, and finally using these features to help decompose the verification problem into

simpler subproblems. The final step in this approach involves using the syntactic and

structural features of the program and property to help perform invariant inference.

1.1 Contributions

I have applied this approach of identifying and using relevant syntactic and structural

features to help scale verification for three related kinds of verification problems: the

verification of 𝑘-safety properties for intraprocedural programs, the verification of

1-safety properties for interprocedural programs, and the verification of information-

flow properties for interprocedural programs. The resulting technical contributions

of the work described in this dissertation are described below.

𝑘-safety properties. For the verification of 𝑘-safety properties, I developed a

method for decomposing corresponding loops across the 𝑘 different runs into maximal
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sets of loops to consider in verification subproblems. Each set of loops constitutes

a verification subproblem, and decomposition into maximal sets of loops allows for

fewer and simpler invariants to be used in solving these verification subproblems,

ultimately improving scalability.

I also contributed a novel application of symmetry-breaking to eliminate redundant

verification subproblems when checking 𝑘-safety. Symmetries are identified using

the syntax of properties in verification subproblems and are used to avoid solving

unnecessary verification subproblems, leading to a clear performance improvement.

I implemented a tool Synonym applying these techniques in an existing auto-

mated 𝑘-safety verifier. These contributions are described in more detail in Chapter 3

and have been presented in a previous conference paper [123].

Interprocedural programs. For the verification of 1-safety properties for inter-

procedural programs, I proposed a parameterizable method of generating verification

subproblems for interprocedural programs using the novel notion of bounded environ-

ments. Like other modular techniques for handling interprocedural programs [103,

82, 112], the problem of verifying the interprocedural program is broken up into sub-

problems that involve inferring invariants for a procedure at a time; the result of using

bounded environments is that the scope of verification subproblems is controlled by

a user-provided parameter and follows the structure of the program call graph. The

parameterizable nature of bounded environments allows a user to adjust the size of

verification subproblems by adjusting the parameter and consequently impact the

scalability of verification overall.

I also proposed EC lemmas, a novel form of invariant useful for handling mutually

recursive procedures, and a way to learn EC lemmas. These invariants are of a

particular form influenced by the program call graph that is suited for the handling

of mutual recursion.
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Finally, I developed an algorithm that uses bounded environments and EC lemmas

for verifying interprocedural programs, implemented in a tool called Clover. These

contributions are described in more detail in Chapter 4 and have been presented in a

previous conference paper [125].

Information-flow properties of interprocedural programs. For the ver-

ification of information-flow properties for interprocedural programs, I developed

grammar templates that can be used in a SyGuS-based approach for inferring useful

information-flow invariants with and without quantifiers. Information-flow properties

can be formalized as 2-safety properties [148], so useful invariants include those that

can express relationships about variables across the two runs. The developed gram-

mar templates thus capture syntactic features such as the equalities of corresponding

variables and array elements across different runs. The grammar templates also in-

clude property-directed invariants that are useful for verification in the presence of

the declassification of otherwise high-security data.

The use of these grammar templates for invariant inference allows for completely

automated verification of information-flow properties where previous techniques that

took a modular approach to interprocedural program verification would have required

human annotations of intermediate invariants. In other words, these grammar tem-

plates encode the necessary human insights to enable the solving of the verifica-

tion subproblems generated when performing modular verification of information-flow

properties for interprocedural programs. I developed and implemented an algorithm

that applies these grammar templates in order to verify information-flow properties

of interprocedural programs, implemented in a tool called Flower. These contribu-

tions are described in more detail in Chapter 5 and have been presented in a previous

conference paper [124].
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Comparisons to state-of-the-art. For each tool developed, I also provide a

comparison of the performance of the tool to existing state-of-the art tools for solving

the kinds of verification problems being considered. These comparisons indicate that

the techniques developed are helpful for scaling automated verification for these kinds

of problems, enlarging the set of programs to which automated verification can be

usefully applied.
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Chapter 2

Preliminaries

In this chapter, I will describe relevant background information and define useful

concepts that will be used throughout the remainder of the dissertation. In particular,

I will describe different approaches to performing formal reasoning over software and

the forms of invariants that are used in these different approaches.

For discussing what kinds of invariants may be used and how they may be used for

verifying safety properties of programs, the simple C-like program shown in Figure 2.1

will serve as an ongoing example. The verification problem here is to prove that the

assertion in the main procedure always holds under the assumptions made in the

earlier assume statements.

main(x, y) {

assume(x > 1);

assume(x < y);

while (y < 10) {

y := update(x, y);

}

assert(x < y);

}

update(x, y) returns z {

z := x * y;

}

Figure 2.1: Example program
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2.1 First-Order Logic

Many program properties can be expressed using first-order logic, including specifica-

tions and relevant intermediate properties for verification. In software model checking,

first-order logic can be used to encode the entire verification problem; first-order logic

formulas both model the system and encode the desired property about the system.

The following grammar gives the syntax for a first-order logic formula [37], with the

“true” and “false” truth constants respectively denoted by ⊤ and ⊥:

𝜑 := 𝑅(⃗𝑡) | ¬𝜑 | 𝜑1 ∧ 𝜑2 | ∃𝑥.𝜑 | ⊤ | ⊥

Each 𝑅 denotes a predicate symbol and each �⃗� denotes a vector (𝑡1, . . . , 𝑡𝑛) of

terms, where terms are given by the following grammar:

𝑡 := 𝑥 |𝑐 |𝑓 (⃗𝑡)

Variables are denoted by 𝑥, constants by 𝑐, and functions by 𝑓 .

The logical symbols for disjunction (∨), implication (⇒), equivalence (⇔), and

universal quantification (∀) are not included in the grammar for 𝜑 but can be defined

in the usual way from conjunction (∧), negation (¬), and existential quantification

(∃). In the sequel, these additional logical symbols are used and assumed to be defined

in this way.

For verification, it is often desirable to use theories, which can formalize existing

knowledge about integers, arrays, and other structures commonly seen in programs.

The success of SMT solvers, which can solve first-order logic formulas with theories,

has also led to the success of first-order logic in program verification. A first-order

theory T = (Σ,A) consists of a set Σ of constant, function, and predicate symbols,

and a set A of first-order logic formulas containing only constants, functions, and

predicate symbols in Σ. These axioms A provide interpretations for the functions

and predicate symbols in the signature Σ. Functions and predicate symbols outside

of Σ are said to be uninterpreted.
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This dissertation makes use of both the theory of integers and the theory of ar-

rays. The theory of integers has a signature containing integers as constant symbols;

multiplication by an integer constant, addition (+), and subtraction (−) as functions;

and equality (=) and (>) as predicate symbols. The theory of arrays has a signature

containing select (·[·]) and store (·⟨·C·⟩) functions as well as an equality (=) predicate

symbol.

2.2 Hoare Logic

Hoare logic is a widely-used formalism for reasoning about the correctness of programs

using Hoare triples and inference rules on them [92]. Proving correctness of a program

is done via the application of inference rules on Hoare triples. A Hoare triple is a triple

{𝑃} 𝑆 {𝑄} consisting of a precondition 𝑃 , a program statement 𝑆, and a postcondition

𝑄. The precondition 𝑃 and postcondition 𝑄 are both formulas in first-order logic.

Using partial correctness semantics, a Hoare triple {𝑃} 𝑆 {𝑄} is valid iff, given a

state in which 𝑃 holds initially, executing the program statement 𝑆 leads to a state in

which 𝑄 holds or else leads to a nonterminating execution. Annotations in Figure 2.2

represent the Hoare triples needed to prove the assertion in the program in Figure 2.1

holds, where each triple {𝑃} 𝑆 {𝑄} within Figure 2.1 is a Hoare triple that could

be inferred through the application of Hoare logic proof rules. Each Hoare triple

must be such that its precondition {𝑃} is the same as the preceding Hoare triple’s

postcondition {𝑄}. Hoare logic thus typically proceeds in a forward or backward

manner.

Important invariants to consider when using Hoare logic are loop invariants. These

should hold when a loop is reached and after each iteration of the loop. For the while

loop in Figure 2.2, this loop invariant is given by 1 < x < y. While here the loop

invariant is simply the result of the assume statements, in other scenarios, they may
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main(x, y) {

{⊤}
assume(x > 1);

{x > 1}
assume(x < y);

{0 < x < y}
while (y < 10) {

{1 < x < y ∧ x < 10}
y := update(x, y);

{1 < x < y}
}

{1 < x < y ∧ y ≥ 10}
assert(x < y);

}

update(x, y) returns z {

z := x * y;

}

Figure 2.2: Hoare triples for the program in Figure 2.1

not be immediately obvious and can be difficult to infer automatically. In general

the strengthening of Hoare logic preconditions or weakening of postconditions may

be required, and finding the necessary constraints or abstractions may similarly be

difficult to do automatically.

Though inference of Hoare logic preconditions and postconditions can be difficult

to automate in general, the checking of Hoare logic proofs has been automated suc-

cessfully in tools like Dafny [107], which has been used in a variety of verification

efforts [87, 88]. In Dafny [107], users provide some annotations (e.g., loop invari-

ants and method preconditions and postconditions), and SMT solvers are used in the

backend to prove that a specified property holds.

2.3 Interprocedural Analysis

Program analysis techniques provide other means to reason about programs. While

Hoare logic-based approaches can, e.g., proceed in a forward- or backward-style man-

ner into procedure calls for each separate call, this way of handling procedure calls is
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similar to inlining. Inlining procedure calls before performing verification or program

analysis will lead to the repeated analysis of the same procedure body for any pro-

cedure called more than once. Furthermore, inlining-based approaches will not work

for recursive procedures.

To tackle the issues presented by procedure calls, interprocedural program anal-

ysis techniques compute and use procedure summaries. A procedure summary is a

kind of invariant of the behavior of a procedure invocation. Procedure summaries

can be viewed as specifications or interface contracts, where internal implementation

details have been abstracted away. In addition to aiding code understanding and

maintenance, they can be combined to verify the full program.

After a procedure summary is inferred by the analysis, it can be used where

applicable to avoid re-analyzing a procedure body in some cases. Such approaches

for computing interprocedural data flow [137, 127, 18] are based on the notion of a

kind of interprocedural control flow graph. This graph contains the flow graphs of all

procedures but also distinguishes edges that result from intraprocedural flows from

edges that result from interprocedural ones. For each edge in the graph, dataflow

analyses associate a dataflow function that describes the effect of the corresponding

control-flow construct on dataflow. For interprocedural flow graphs that contain

edges that correspond to a function call, e.g., edges from a call block to the block

immediately following the call (as used in the functional approach to interprocedural

analysis [137]), the dataflow function for this edge constitutes a procedure summary.

In general, summaries for procedures either over- or under-approximate their be-

haviors, with over-approximate summaries capturing useful information for all pro-

gram executions and under-approximate procedures capturing useful information for

only some executions. While much work in program analysis computes only over-

or under-approximate procedure summaries, there also exist program analyses that
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compute both [82]. The computation of both over- and under-approximate procedure

summaries can help solve verification problems more easily [82, 102].

The separate analysis of procedure bodies and the use of the results of this analy-

sis constitutes a modular approach to program analysis. The problem of performing

whole-program analysis is handled modularly by handling the subproblems of per-

forming analysis of program procedures; the results of these analyses (i.e., procedure

summaries) can then be combined to solve other subproblems and ultimately the

whole problem.

2.4 Constrained Horn Clauses

Many modern approaches to automated software model checking make use of an

encoding of the software verification problem as a system of Constrained Horn Clauses

(CHCs) [84]. For a system of CHCs encoding a verification problem, a solution to

the system of CHCs exists iff the property holds for the original program. Many

CHC-solving algorithms are modular and fully-automated, making use of SMT-solver

backends. Combined with the ability to encode software verification problems as

systems of CHCs [84], these CHC solvers can be effectively seen as modular software

verifiers.

In this section, I will provide background information about CHCs, describe how

to encode transition systems as systems of CHCs, and finally describe how to encode

interprocedural programs as CHCs. For each encoding, I will describe the correspon-

dence between the encoding and program invariants.

Definition 2.4.1 (CHC). A CHC is an implicitly universally quantified implication,

which is of the form body ⇒ head . Let R be a set of uninterpreted predicates. The

formula head may take either the form 𝑅(�⃗�) for 𝑅 ∈ R or else ⊥. Implications in

which head =⊥ are called queries. The formula body may take the form 𝜑(�⃗�) or
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𝑅1(�⃗�1) ∧ . . . ∧ 𝑅𝑛(�⃗�𝑛) ∧ 𝜑(�⃗�), where each 𝑅𝑖 is an uninterpreted predicate, and 𝜑(�⃗�)

is a fully interpreted formula over �⃗�, which may contain all variables in each �⃗�𝑖 and

(if the head is of the form 𝑅(�⃗�)) all variables in �⃗�.

Definition 2.4.2 (Solution). A solution for a system of CHCs is a mapping 𝑀 of

predicates in R to interpretations, such that the interpretations for the predicates

satisfy all the CHCs in the system.

Definition 2.4.3 (Inductive Interpretation). For a mapping𝑀 of uninterpreted pred-

icates to interpretations, we say that the interpretations of 𝑀 are inductive iff they

satisfy all non-query CHCs.

In particular, an 𝑀 that maps each 𝑛-ary predicate 𝑅 to 𝜆𝑥1, . . . , 𝑥𝑛.⊤ is induc-

tive. Furthermore, a solution 𝑀 for a system of CHCs is also inductive.

2.4.1 CHCs for Transition Systems

As an intermediate, easier-to-understand step, we consider how to encode the safety

of a transition system in a system of CHCs [84]. First we review Kripke structures

and how to prove safety for them. Then we will consider their encoding as a system

of CHCs.

We will consider Kripke structures (𝑆, 𝑆0, 𝑇, 𝐿,AP , 𝑉 ), where 𝑆 is the set of states,

𝑆0 ⊆ 𝑆 is the set of initial states, 𝑇 ⊆ 𝑆 × 𝑆 is the transition relation, 𝐿 : 𝑆 → 2AP

is the labeling function for states, and AP is a set of atomic propositions over state

variables 𝑉 . We can use the labeling function to help us refer to sets of states using

formulas, where a formula 𝐹 (𝑉 ) over 𝑉 refers to states 𝑠 ∈ 𝑆 such that
⋀︀
𝐿(𝑠) ⇒

𝐹 (𝑉 ). Let init(𝑉 ) be a formula capturing all the states in 𝑆0. Also let 𝜌(𝑉, 𝑉 ′)

be a formula over 𝑉 ∪ 𝑉 ′ capturing transition relation 𝑇 . For any (𝑠0, 𝑠1) ∈ 𝑇 ,

𝜌(𝑉, 𝑉 ′) ⇒ 𝐿(𝑠0) ∧ 𝐿(𝑠1)
′, where 𝑉 ′ is a set of primed variables of 𝑉 and 𝐿(𝑠1)

′

denotes the replacement of every variable in 𝐿(𝑠1) with its primed version in 𝑉 ′.

14



init(𝑉 )⇒ 𝑅(𝑉 )

𝑅(𝑉 ) ∧ 𝜌(𝑉, 𝑉 ′)⇒ 𝑅(𝑉 ′)

𝑅(𝑉 ) ∧ error(𝑉 )⇒⊥

Figure 2.3: An encoding of the safety of a transition system as a system of CHCs

Definition 2.4.4 (Safety of transition system). Given a set Error ⊆ 𝑆 of error

states, a Kripke structure (𝑆, 𝑆0, 𝑇, 𝐿,AP , 𝑉 ) is safe iff there exists no sequence of

states 𝑠0𝑠1 . . . 𝑠𝑛 for 𝑠𝑖 ∈ 𝑆 where 𝑠0 ∈ 𝑆0, (𝑠𝑖, 𝑠𝑖+1) ∈ 𝑇 for 𝑖 ∈ {0, . . . 𝑛 − 1}, and

𝑠𝑛 ∈ Error .

Note that for a formula error(𝑉 ) capturing the set of error states, the Kripke

structure is also safe if there is no sequence of labels for states 𝐿(𝑠0)𝐿(𝑠1) . . . 𝐿(𝑠𝑛)

for 𝑠𝑖 ∈ 𝑆 where 𝐿(𝑠0) ⇒ init(V ), 𝐿(𝑠𝑖) ∧ 𝐿(𝑠𝑖+1)
′ ⇒ 𝜌(𝑉, 𝑉 ′) for 𝑖 ∈ {0, . . . 𝑛 − 1},

and 𝐿(𝑠𝑛)⇒ error(𝑉 ). We will try to show safety in this way.

One way to prove safety is to find an invariant. An inductive invariant inv(𝑉 ) is

a formula over the variables in 𝑉 such that the following hold:

init(𝑉 )⇒ inv(𝑉 ) (initiation)

inv(𝑉 ) ∧ 𝜌(𝑉, 𝑉 ′)⇒ inv(𝑉 ′) (consecution)

The initiation check demonstrates that the inductive invariant holds for all initial

states of the transition system. The consecution check demonstrates that if the in-

variant holds for a state, then it holds for any state to which it might transition. If

both checks hold and the safety check holds, then the transition system is safe, where

this check is as follows:

inv(𝑉 ) ∧ error(𝑉 )⇒⊥ (safety)

I.e., if the invariant holding in a state implies that the state is not an error state.

An encoding of the problem of proving safety as a system of CHCs (as described

previously [84]) is shown in Figure 2.3. An inductive interpretation will provide an
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interpretation for uninterpreted predicate 𝑅 that makes the first two CHCs true. Note

that these correspond exactly to the initiation and consecution checks shown earlier;

the interpretation for 𝑅 in the inductive interpretation is an inductive invariant of the

original transition system. The query CHC corresponds exactly to the final check for

safety mentioned previously; there is a solution 𝑀 for the system of CHCs iff there is

an inductive invariant inv(𝑉 ) for which the safety check holds, and inv(𝑉 ) = 𝑀 [𝑅],

where 𝑀 [𝑅] denotes the interpretation to which 𝑀 maps 𝑅.

2.4.2 CHCs for Interprocedural Programs

The problem of modular program verification can similarly be expressed as a system

of CHCs [84].

A system of CHCs for a particular program without global variables can be gen-

erated by introducing an uninterpreted predicate per procedure and encoding the

semantics of each procedure using these predicates. A procedure with 𝑛 inputs and

𝑚 outputs can be encoded as an 𝑛 + 𝑚-ary predicate. An interpretation of this

predicate could then express relationships between the inputs and outputs of the

procedure. In the context of discussing CHC encodings, each loop is treated as a

recursive procedure, assertions are encoded using queries.

For a while loop with condition 𝑒 and body body that access and modify variables

�⃗�, the loop can be transformed into a recursive procedure by replacing the loop with

a call to a new function 𝑃 that has variables �⃗� as both its inputs and outputs and

has if (𝑒) {body ; �⃗� := 𝑃 (�⃗�)} as its body. In order for assertions to be encoded using

queries, they may need to be hoisted (i.e., propagated up) from locations deeper in

the call graph to the the entry procedure of a program [105].

Rather than directly encoding a version of an interprocedural data flow graph as

used in program analysis, CHCs can be seen as encoding a call graph for a program.
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proc ::=𝑃 (𝑥1, . . . , 𝑥𝑚) returns (𝑦1, . . . , 𝑦𝑛) {stmt}
stmt ::=stmt1; stmt2 | (𝑥1, . . . , 𝑥𝑛) := 𝑒 | assume 𝑒 |if(𝑒) {stmt} |

(𝑥1, . . . , 𝑥𝑛) := 𝑃 (𝑒1, . . . , 𝑒𝑚)

Figure 2.4: The syntax of procedures

Enc(stmt1; stmt2) =Enc(stmt1) ∧ Enc(stmt2)

Enc((𝑥1, . . . , 𝑥𝑛) := 𝑒) =(𝑥1, . . . , 𝑥𝑛) = Enc(𝑒)}
Enc(assume 𝑒) =𝑒

Enc(if(𝑒) {stmt}) =Enc(𝑒)⇒ Enc(smt)

Enc((𝑥1, . . . , 𝑥𝑛) := 𝑃 (𝑒1, . . . , 𝑒𝑚)) =𝑃 (𝑒1, . . . , 𝑒𝑚, 𝑥1, . . . , 𝑥𝑛)

Figure 2.5: SMT encodings for procedure bodies

For each CHC body ⇒ head , a predicate 𝐵 appears in the body where the predicate

in the head is 𝐻 whenever the procedure for 𝐻 calls the procedure for 𝐵.

To make this more concrete, assume that there is an arbitrary program. Assume

that it is transformed into a program in which each non-entry procedure has the

syntax specified in Figure 2.4, with employed transformations including transforming

loops into recursive procedures and performing assertion hoisting. Assume that this

program is further transformed so that each procedure body is converted into single-

static assignment form [55], in which each variable is assigned to exactly once, yielding

a resulting program Prog . Enc in Figure 2.5 then demonstrates how to generate an

SMT encoding of the body of an arbitrary procedure in Prog , where each expression

𝑒 has a straightforward mapping into an SMT formula Enc(𝑒). Let 𝑃 be an arbitrary

non-entry procedure in Prog with 𝑛 inputs, 𝑚 outputs, and body body𝑃 . It is possible

to convert the encoding Enc(body𝑃 ) of the body of 𝑃 into disjunctive normal form

DNF (Enc(body𝑃 )) [37]. For each disjunct 𝐷𝑃 in DNF (Enc(body𝑃 )), the following

CHC is generated: 𝐷𝑃 ⇒ 𝑃 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . 𝑦𝑚).
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main(x, y) {

assume(x > 1);

assume(x < y);

(x’, y’) := while(x, y);

assert(x’ < y’);

}

while(x, y) returns (x’, y’) {

if (y < 10) {

z := update(x, y);

(x’, y’) := while(x, z);

}

if (!(y < 10)) {

(x’, y’) := (x, y);

}

}

update(x, y) returns z {

z := x * y;

}

Figure 2.6: Transformed version of the program from 2.1

𝑧 = 𝑥 * 𝑦 ⇒update(𝑥, 𝑦, 𝑧)

𝑦 < 10 ∧ update(𝑥, 𝑦, 𝑧) ∧ 𝑤ℎ𝑖𝑙𝑒(𝑥, 𝑧, 𝑥′, 𝑦′) ⇒while(𝑥, 𝑦, 𝑥′, 𝑦′)

¬(𝑦 < 10) ∧ 𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 ⇒while(𝑥, 𝑦, 𝑥′, 𝑦′)

𝑥 > 1 ∧ 𝑦 > 𝑥 ∧ while(𝑥, 𝑦, 𝑥′, 𝑦′) ∧ ¬(𝑥′ < 𝑦′) ⇒ ⊥

Figure 2.7: CHC encoding of the program from Figure 2.1

For the entry procedure with body bodymain , the syntax of the procedure is as

in Figure 2.4, except we additionally allow assert statements to appear in the

procedure body, where Enc(assert(𝑒)) = ¬Enc(𝑒). For each disjunct 𝐷main in

DNF (Enc(bodymain)), the following CHC is generated: 𝐷main ⇒⊥.

Figure 2.6 gives the program from Figure 2.1 after all transformations have

been applied. The loop has been transformed into a recursive procedure. The

per-procedure conversion to single static assignment form introduced primed versions

of the x and y variables. Figure 2.7 gives the final CHC encoding of the program

from Figure 2.1.

Each interpretation of a predicate can be viewed as a procedure summary or

specification and expresses an invariant for the procedure. These may but need not
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update ↦→ 𝜆𝑥, 𝑦, 𝑧.𝑥 > 1 ∧ 𝑦 > 1⇒ 𝑧 > 𝑦

while ↦→ 𝜆𝑥, 𝑦, 𝑥′, 𝑦′.𝑥′ = 𝑥 ∧ 𝑦′ ≥ 𝑦

Figure 2.8: Interpretations for predicates in the system of CHCs in Figure 2.7

correspond to strongest postconditions nor weakest preconditions. In the case of the

example program whose encoding is shown in Figure 2.7, the interpretations shown

in Figure 2.8 are sufficient for proving safety. There are other possible interpretations

that also constitute solutions of the CHCs. For example, the interpretation that maps

while to 𝜆𝑥, 𝑦, 𝑥′, 𝑦′.1 < 𝑥 < 𝑦 ⇒ 1 < 𝑥′ < 𝑦′ would also be sufficient. In fact, this

interpretation expresses a loop invariant that is the same as the loop invariant for the

while loop shown in Figure 2.2.

For a formula 𝐹 containing uninterpreted predicates, we let 𝑀(𝐹 ) be the result

of replacing each predicate with its interpretation in 𝑀 . We may regard these inter-

pretations as procedure summaries, making this substitution analogous to replacing

a procedure with its summary.

For an inductive 𝑀 , for each predicate 𝑅 that represents a program procedure r,

𝑀 [𝑅] is an over-approximation of the behavior of procedure r. Each 𝑀 [𝑅] expresses

an invariant for the behavior of r. For example, the interpretation for update in

Figure 2.8 captures the relationship between the inputs 𝑥, 𝑦 and output 𝑧 of the

update procedure in Figure 2.1 and the interpretation for while captures the loop

invariant for the while loop in Figure 2.1.

Under-approximate summaries for procedures can also be captured in interpre-

tations for predicates. For a mapping 𝑀 of predicates to interpretations that con-

stitute under-approximate summaries, this mapping should obey the invariant that

∀�⃗�.𝑀 [𝑅](�⃗�) ⇒ 𝑂[𝑅](�⃗�), where 𝑂 is any inductive mapping of the predicates in the

CHC to interpretations, including the strongest possible mapping 𝑂. Each interpreta-

tion 𝑀 [𝑅] can thus be viewed as an under-approximation of the behavior of the corre-

sponding program procedure r of the original program. Such mappings will be referred
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to under-approximate mappings (as opposed to over-approximate mappings). Under-

approximate summaries can be used both to help with inferring over-approximate

summaries during verification (see Chapter 4) and with finding counterexamples to

correctness for buggy programs.

More specifically, for a system of CHCs, we can construct several SMT formulas

such that, if any is satisfiable, the original system of CHCs has no solution. Such

formula 𝑈 is the body of any unfolding of a query CHC, where unfolding is defined

as follows:

Definition 2.4.5 (Unfolding). For a given CHC 𝐶 in a system of CHCs, where 𝐶

is of the form 𝑅1(�⃗�1) ∧ . . . ∧ 𝑅𝑛(�⃗�𝑛) ∧ 𝜑(�⃗�) ⇒ head , an uninterpreted predicate 𝑅𝑖

in its body can be unfolded in the CHC by replacing the occurrence of 𝑅𝑖(�⃗�𝑖) with

fresh(body 𝑖[�⃗�𝑖 ↦→ �⃗�𝑖], �⃗�𝑖, 𝐶), where body 𝑖 ⇒ 𝑅𝑖(�⃗�𝑖) is another CHC in the system of

CHCs, body 𝑖[�⃗�𝑖 ↦→ �⃗�𝑖] is the simultaneous substitution of variables in �⃗�𝑖 with variables

in �⃗�𝑖 in body 𝑖, and fresh(𝑒, �⃗�𝑖, 𝐶) is the result of replacing each variable in 𝑒 that

does not occur in �⃗�𝑖 with a variable not in 𝐶. We call the result of unfolding an

uninterpreted predicate in a CHC 𝐶 (possibly many times) an unfolding of 𝐶.

There may be several CHCs of the form body 𝑖 ⇒ 𝑅𝑖(�⃗�𝑖) within the system of

CHCs, leading to several possible unfoldings of uninterpreted predicate 𝑅𝑖 in the

CHC 𝐶.

If 𝑈 is the body of an unfolding of a query CHC and an under-approximate

mapping 𝑀 is such that 𝑀(𝑈) is a satisfiable SMT formula, then the original set of

CHCs has no solution, and, furthermore, the satisfying assignment corresponds to an

error trace of the original program.

In addition to using unfoldings to generate formulas for demonstrating that a

set of CHCs has no solution, unfoldings can be used to help generate subproblems

during CHC-based modular program verification. When viewed in terms of program

verification, unfolding a predicate roughly corresponds to performing the inlining of

20



the procedure of the original program that the predicate encodes in the system of

CHCs.

2.5 CHC Solving

In order to find solutions to systems of CHCs, CHC solvers [84, 112, 103, 39, 95, 149,

74] query to backend SMT (Satisfiability Modulo Theory) solvers [24] to find interpre-

tations that make all CHC rules valid. In addition to classic fixpoint computations,

(as in interprocedural dataflow analysis and abstract interpretation) CHC solvers use

model checking techniques, e.g., counterexample guided abstraction refinement (CE-

GAR) [47], interpolation [109], property-directed reachability (PDR) [36, 65], and

guess-and-check procedures [72]. They can thus find procedure summaries that are

adequate for verification but that are not necessarily least or greatest fixpoints. CHC-

based verifiers have been successfully applied to a range of benchmark programs, but

there remain significant challenges in handling mutual recursion and in scalability,

especially in deductive approaches that rely on unfolding to solve systems of CHCs.

Chapter 4 addresses some of these challenges and provides a more comprehensive

description of specific CHC solving techniques in Section 4.9.

Many deductive approaches to CHC solving, including the one described in Chap-

ter 4, make use of unfolding CHCs [112, 103]. Deductive CHC solvers (and non-

CHC-based verifiers) may also rely on interpolating SMT solvers, which are able to

compute interpolants.

Definition 2.5.1 (Interpolant). Given two formulas 𝐴(𝑉1∪𝑉2) and 𝐵(𝑉1∪𝑉3) where

𝑉2 ∩ 𝑉3 = ∅ and 𝐴(𝑉1 ∪ 𝑉2) ∧ 𝐵(𝑉1 ∪ 𝑉3) is unsatisfiable, an interpolant for these

formulas is a formula I(𝑉1) that contains only free variables 𝑉1 shared by 𝐴 and 𝐵,

where 𝐴(𝑉1 ∪ 𝑉2)⇒ I(𝑉1) holds and I(𝑉1) ∧𝐵(𝑉1 ∪ 𝑉3) is unsatisfiable.
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if (y > 20) {

while (i < 10) {

x *= i;

i++;

}

} else {

while (i < 10) {

x++;

i++;

}

}

Figure 2.9: Example program

An interpolant for formulas𝐴(𝑉1∪𝑉2) and𝐵(𝑉1∪𝑉3) can be viewed as “separating”

𝐴 and 𝐵, and, in verification, can be used to rule out spurious counterexamples when

𝐴 represents known facts about the program and 𝐵 represents one or more error

traces. In CHC solving, the learned interpolant can often be used to help construct

the interpretations in over-approximate mapping 𝑂.

2.6 Self-Composition and Product Programs

So far, we have considered only verifying safety properties of programs. The work

presented here also considers the verification of certain relational properties of pro-

grams, including 𝑘-safety hyperproperties, in which error states encompass the states

of 𝑘 copies of a program. Note that a 1-safety property is the same as a non-relational

safety property. A relational verification problem (RVP) is a tuple consisting of pro-

grams {𝑃𝑗}, a relational precondition pre, and a relational postcondition post .

As an ongoing example, let us consider proving hyperproperties about the C-like

integer program shown in Figure 2.9. For proving a 𝑘-hyperproperty, we use 𝑘 copies

of the program {𝑃𝑗} that are identical modulo renaming and use indices 𝑗 ∈ {1, . . . , 𝑘}

as subscripts to denote variables in the different copies. We assume that each variable

initially takes a nondeterministic value in each program copy.
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For verifying relational properties of programs, relational invariants are useful. For

example, let us consider an RVP with precondition x1 < x2∧x1 > 0∧i1 > 0∧i1 = i2

(pre) and postcondition x1 < x2 ∨ y1 ̸= y2 (post). For proving this property, knowing

that the first loops of 𝑃1 and 𝑃2 are such that, if they execute in lockstep, they

maintain the relational invariant that x1 < x2, which would be useful for proving the

postcondition.

Rather than developing new formalisms to handle multiple programs during veri-

fication, one approach for relational property verification is to compose the different

programs or copies of the program or to take their composition, reducing the rela-

tional verification problem to a non-relational verification problem over the result of

the composition or product [28, 25]. In the resulting program, there will be a set of

variables for each of the programs (or program copies). By maintaining a bijective

mapping of the composition or product program’s variables to the variables of the

program (copy) to which they correspond, invariants of the composition or product

program can easily be converted to relational invariants and vice-versa. As a result, in

later sections, invariants of composition or product programs that correspond to rela-

tional invariants over the different programs (or program copies) will also be referred

to as relational invariants.

In performing composition, the programs may be composed via sequential compo-

sition [148, 28] or parallel composition [143, 152, 21, 31] operators. Using a simplistic

sequential composition can prevent the inference of useful relational properties. For

example, if composition is performed such that each program copy is run, one after

the other, there is no point during execution of the composed program at which in-

termediate states of one program copy can be related to the intermediate states of

another: for the 𝑖th program, the first 𝑖−1 program will have finished their execution

and all the 𝑖 + 1th through 𝑘th will have yet to start their execution. For example,

consider the sequential composition of 𝑃1 and 𝑃2 shown in Figure 2.10. The prop-
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assume(x1 < x2 ∧ i1 > 0 ∧ i1 = i2);

if (y1 > 20) {

while (i1 < 10) {

x1 *= i1;

i1++;

}

} else {

while (i1 < 10) {

x1++;

i1++;

}

}

if (y2 > 20) {

while (i2 < 10) {

x2 *= i2;

i2++;

}

} else {

while (i2 < 10) {

x2++;

i2++;

}

}

assert(x1 < x2 ∨ y1 ̸= y2);

Figure 2.10: Sequential composition of 𝑃1 and 𝑃2 from Figure 2.9

erty to check is now a safety property of the composed program, indicated by the

assumption of the precondition and assertion of the postcondition. Note that here, in

this sequential composition, there is no way to learn about or take advantage of the

relational invariant mentioned earlier about the loop bodies of 𝑃1 and 𝑃2; to prove

the assertion at the end, individual loop invariants capturing the precise values of 𝑖

at each iteration will need to be learned separately in order to prove their equality at

their end of the composed program. Note that the required invariants will be nonlin-

ear and of the form 𝑥𝑗 =
𝑥𝑗,init×𝑖𝑗 !

𝑖𝑗,init !
for 𝑗 ∈ {1, 2}, which requires the use of auxiliary

variables 𝑥𝑗,init and 𝑖𝑗,init to denote the initial values of 𝑥𝑗 and 𝑖𝑗 respectively. Given

the difficulty of inferring such invariants, it is preferable to use simpler relational

invariants.

With parallel-style composition as used in the Cartesian Hoare Logic ap-

proach [143] and other efforts using relational program logics [152, 21, 31], it is
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possible to try to align program fragments from different copies in order to find

useful relational invariants. This alignment, which we call synchrony, is also possible

to perform during the construction of product programs [25]; in fact, the Cartesian

Hoare Logic approach to verification essentially constructs an implicit product pro-

gram during the verification algorithm. Note that with a parallel-style composition,

since each program copy is independent, we need only explore a single interleaving,

since all interleavings have the same behavior. More elaborate applications of

sequential composition that perform some amount of synchrony can avoid the issue

presented by a simplistic composition [148], with all sequential compositions being

particular interleavings of the result of a parallel composition. Typically, when

performing synchrony, the aim is to align program fragments across which useful

relational invariants are easy to derive.

A useful interleaving of the parallel composition is shown in Figure 2.11, where

here the loops have been aligned so that it is possible here to make use of the fact that

corresponding while loops execute in lockstep. The parallel composition has a branch

per each possible pair of control-flow decisions. The alignment strategy usedsplits

loops so that, for each control-flow decision, loop iterations are executed in lockstep

across copies whenever possible using lockstep composition, using a naive composition

that does not perform any synchronization in order to handle the possibility that

one loop has finished iterating before the other. In the case of the example program’s

copies, because all loops iterate the same number of times, the loops resulting from the

naive composition actually never iterate, but this is not always the case for programs

in general.

Whether naive or lockstep composition is used, it is still necessary to find in-

variants for the resulting loops and check that they truly are loop invariants. For

relational program verification of two programs or program copies, these checks can

be formalized as follows, where each loop is encoded as a triple of first-order logic for-
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mulas ⟨Init(�⃗�, �⃗�),Guard(�⃗�),Tr(�⃗�, �⃗�)⟩, where Init(�⃗�, �⃗�) denotes a symbolic encoding

of a precondition for the loop, Guard(�⃗�) denotes the encoding of the loop guard, and

Tr(�⃗�, �⃗�) encodes the loop body. Here, �⃗� is the vector of local variables that are live

at the loop guard. The Enc procedure from Figure 2.5 can be applied directly to the

guard and body of the loop to yield Guard(�⃗�) and Tr(�⃗�, �⃗�).

Definition 2.6.1 (Naive composition). Given two loops encoded as triples of first-

order logic formulas ⟨Init1(�⃗�1, �⃗�1),Guard1(�⃗�1),Tr 1(�⃗�1, �⃗�1)⟩ and

⟨Init2(�⃗�2, �⃗�2),Guard2(�⃗�2),Tr 2(�⃗�2, �⃗�2)⟩, a relational precondition pre(�⃗�1, �⃗�2), and a re-

lational postcondition post(�⃗�1, �⃗�2), the task of proving that the postcondition holds

given the precondition is reduced to the task of finding (individual) inductive invari-

ants 𝐼1 and 𝐼2:

pre(�⃗�1, �⃗�2) ∧ Init1(�⃗�1, �⃗�1)⇒ 𝐼1(�⃗�1)

pre(�⃗�1, �⃗�2) ∧ Init2(�⃗�2, �⃗�2)⇒ 𝐼2(�⃗�2)

𝐼1(�⃗�1) ∧Guard1(�⃗�1) ∧ Tr 1(�⃗�1, �⃗�1)⇒ 𝐼1(�⃗�1)

𝐼2(�⃗�1) ∧Guard2(�⃗�2) ∧ Tr 2(�⃗�2, �⃗�2)⇒ 𝐼2(�⃗�2)

𝐼1(�⃗�1) ∧ 𝐼2(�⃗�2) ∧ ¬Guard1(�⃗�1) ∧ ¬Guard2(�⃗�2)⇒ post(�⃗�1, �⃗�2)

Note that the method of naive composition requires handling of multiple invari-

ants, which is known to be difficult. Furthermore, it might lose some important

relational information specified in pre(�⃗�1, �⃗�2). It is thus preferable to use lockstep

composition where possible.

Definition 2.6.2 (Lockstep composition). Given two loops encoded as triples

⟨Init1(�⃗�1, �⃗�1),Guard1(�⃗�1),Tr 1(�⃗�1, �⃗�1)⟩ and ⟨Init2(�⃗�2, �⃗�2),Guard2(�⃗�2),Tr 2(�⃗�2, �⃗�2)⟩, a

relational precondition pre(�⃗�1, �⃗�2), and a relational postcondition post(�⃗�1, �⃗�2), let

both loops iterate exactly the same number of times. Then the task of

proving that the postcondition holds given the precondition is reduced to the task of

26



finding one (relational) inductive invariant 𝐼:

pre(�⃗�1, �⃗�2) ∧ Init1(�⃗�1, �⃗�1) ∧ Init2(�⃗�2, �⃗�2)⇒ 𝐼(�⃗�1, �⃗�2)

𝐼(�⃗�1, �⃗�2) ∧Guard1(�⃗�1) ∧ Tr 1(�⃗�1, �⃗�1) ∧Guard2(�⃗�2) ∧ Tr 2(�⃗�2, �⃗�2)⇒ 𝐼(�⃗�1, �⃗�2)

𝐼(�⃗�1, �⃗�2) ∧ ¬Guard1(�⃗�1) ∧ ¬Guard2(�⃗�2)⇒ post(�⃗�1, �⃗�2)

For the composition shown in Figure 2.11, a Hoare-style analysis can help yield

the loop invariant x1 < x2 ∧ i1 = i2 for the first while loop, which is the loop

resulting from lockstep composition. Further forward analysis makes it apparent that

the following loops within the first branch will not iterate even once, finally allowing

such a Hoare-style analysis to prove the assertion holds for this case, having only

needed the single invariant for the lockstep composition.

For the second and third branches, the only loop invariants needed within these

branches are the invariants that y1 ̸= y2, and for the final branch, again the invariant

x1 < x2 ∧ i1 = i2 holds for the first while loop (which again results from a lockstep

composition) with the remaining loops again not iterating even a single time. Using

synchrony to explore this particular interleaving of a parallel composition thus allows

a Hoare-style analysis to show that the assertion holds for the composed program.

There are challenges in achieving such synchrony and inferring and applying re-

lational invariants in a fully automated setting. In particular, in order to make sure

relational invariants are inferred for loops where possible, detecting which loops can

be executed in lockstep becomes important. We will describe such challenges in more

detail in the following chapter.

In addition to performing composition or constructing a product program di-

rectly, completely CHC-based approaches perform synchrony directly on CHCs by

using predicate pairing [60, 113, 59]. Predicates in the original system of CHCs are

paired and a new predicate is introduced, where the new predicate represents the

paired predicates’ conjunction with each other and an additional constraint. The
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assume(x1 < x2 ∧ i1 > 0 ∧ i1 = i2);

if (y1 > 20 ∧ y2 > 20) {

while (i1 < 10 ∧ i2 < 10) {

x1 *= i1; i1++;

x2 *= i2; i2++;

}

while (i1 < 10) {

x1 *= i1; i1++;

}

while (i2 < 10) {

x2 *= i2; i2++;

}

} else if (y1 > 20 ∧ ¬(y2 > 20)) {

while (i1 < 10 ∧ i2 < 10) {

x1 *= i1; i1++;

x2++; i2++;

}

while (i1 < 10) {

x1 *= i1; i1++;

}

while (i2 < 10) {

x2++; i2++;

}

} else if (¬(y1 > 20) ∧ y2 > 20) {

while (i1 < 10 ∧ i2 < 10) {

x1++; i1++;

x2 *= i2; i2++;

}

while (i1 < 10) {

x1++; i1++;

}

while (i2 < 10) {

x2 *= i2; i2++;

}

} else {

while (i1 < 10 ∧ i2 < 10) {

x1++; i1++;

x2++; i2++;

}

while (i1 < 10) {

x1++; i1++;

}

while (i2 < 10) {

x2++; i2++;

}

}

assert(x1 < x2 ∨ y1 ̸= y2);

Figure 2.11: Synchronized sequential composition of 𝑃1 and 𝑃2 from Figure 2.9
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new predicate represents a relational invariant for the program fragments captured

by the paired predicates. In the techniques employed in this dissertation, relational

invariants are important and used extensively, but synchrony is controlled during

verification rather than up-front as is the case with these CHC-based approaches.
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Chapter 3

Verification of relational properties

In this chapter, I will describe a compositional framework that leverages relational

specifications to simplify generated verification subtasks on a composed program.

This framework is driven by two main strategies: synchrony and symmetry. This

chapter, unlike subsequent chapters, does not rely on a CHC encoding of programs,

and thus does not treat loops as recursive procedures.

The framework assumes that a parallel composition is used to produce a product

program, allowing for more potential in aligning loop bodies during verification, and,

similar to closely related efforts [25, 143], chooses to synchronize (i.e., align) programs

at conditional blocks as well as loops. As with these related efforts, the framework

aims to execute loops in lockstep so that relational invariants can be derived over

corresponding iterations over the loop bodies, and does so using a novel technique

that analyzes relational specifications to infer, under reasonable assumptions, maximal

sets of loops that can be executed in lockstep. Synchronizing at conditional blocks in

addition to loops enables simplification due to relational specifications and conditional

guards that might result in infeasible or redundant verification subtasks. Pruning

of such infeasible subtasks has been performed and noted as important in existing

work [143], and synchronizing at conditional blocks allows us to prune eagerly. More
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importantly, aligning different programs at conditional statements sets up our next

strategy.

The second strategy is the exploitation of symmetry in relational specifications.

Due to control flow divergences or non-lockstep executions of loops, even different

copies of the same program may proceed along different code fragments. However,

some of the resulting verification subtasks may be indistinguishable from each other

due to underlying symmetries among related fragments. This strategy analyzes the

relational specifications, expressed as formulas in first-order theories (e.g., linear inte-

ger arithmetic) with multi-index variables, to discover symmetries and exploit them

to prune away redundant subtasks. Prior works on use of symmetry in model check-

ing [67, 46, 96, 64] are typically based on symmetric states satisfying the same set

of indexed atomic propositions, and do not consider symmetries among different in-

dices in specifications. In contrast, the work described here is the first to extract

such symmetries in relational specifications, and to use them for pruning redundant

subtasks during relational verification. For extracting these symmetries, I have lifted

core ideas from symmetry-discovery and symmetry-breaking in SAT formulas [54] to

richer formulas in first-order theories.

The strategies proposed for exploiting synchrony and symmetry via relational

specifications are fairly general in that they can be employed in various verification

methods. I provide a generic logic-based description of these strategies at a high

level (Sect. 3.2) and describe a specific instantiation in a verification algorithm based

on forward Hoare-style analysis that computes strongest-postconditions (Sect. 3.3).

I have implemented this approach in a tool called Synonym built on top of the

Descartes tool [143]. An experimental evaluation (Sect. 3.4) shows the effectiveness

of this approach in improving the performance of verification in many examples (and a

marginal overhead in smaller examples). In particular, exploiting symmetry is crucial

31



𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 > 20

𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 ≤ 20

𝑦1 > 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 > 20

𝑦1 > 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 ≤ 20

𝑦1 ≤ 20 ∧ 𝑦2 > 20 ∧ 𝑦3 > 20

𝑦1 ≤ 20 ∧ 𝑦2 > 20 ∧ 𝑦3 ≤ 20

𝑦1 ≤ 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 > 20

𝑦1 ≤ 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 ≤ 20

Figure 3.1: Eight possible control-flow decisions

in enabling verification to complete for some properties, without which Descartes

exceeds a timeout on all benchmark examples.

The work presented in this chapter has previously been presented and published

at a conference [123].

3.1 Motivating Example

Consider three program copies {𝑃𝑗} of the program from Figure 2.9. We can use these

three program copies to help prove a 3-safety hyperproperty about the program. A

variety of useful properties can be expressed as 𝑘-safety properties with 𝑘 ≥ 3, such

as transitivity and homomorphism (both 3-safety properties), as well as associativity

(a 4-safety property) [143].

Recall that a relational verification problem (RVP) is a tuple consisting of pro-

grams {𝑃𝑗}, a relational precondition pre, and a relational postcondition post . In

the example RVPs below involving 3-safety properties, we will consider the three

conditionals, which in turn lead to eight possible control-flow decisions (Figure 3.1)

in a composed program. Each RVP reduces to subproblems for proving that post

can be derived from pre for each of these control-flow decisions. In the rest of the

section, I demonstrate the underlying ideas behind the proposed approach to solve

these subproblems efficiently.
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Maximizing Lockstep Execution. Given an RVP (referred to as RVP1) with

precondition 𝑥1 < 𝑥3 ∧ 𝑥1 > 0 ∧ 𝑖1 > 0 ∧ 𝑖2 ≥ 𝑖1 ∧ 𝑖1 = 𝑖3 (pre) and postcondition

(𝑥1 < 𝑥3 ∨ 𝑦1 ̸= 𝑦3)∧ 𝑖1 > 0∧ 𝑖2 ≥ 𝑖1 ∧ 𝑖1 = 𝑖3 (post), consider a control-flow decision

𝑦1 > 20∧ 𝑦2 > 20∧ 𝑦3 > 20. This leads to another RVP, consisting of three programs

of the following form:

assume(y𝑗 > 20); while (i𝑗 < 10) { x𝑗 *= i𝑗; i𝑗++; }

where 𝑗 ∈ {1, 2, 3}, and the aforementioned pre and post . From pre, it follows that

𝑖1 = 𝑖3 and 𝑖2 ≥ 𝑖1. We can thus infer that the first and third loops are always executed

the same number of times, while the second loop may be executed for fewer iterations.

This knowledge allows a program analyzer to infer a single relational invariant for the

first and third loops and handle the second loop separately. Clearly, the relational

invariant 𝑥1 < 𝑥3 ∧ 𝑖1 = 𝑖3 ∧ 𝑖1 ≤ 10 and the non-relational invariant 𝑖2 ≤ 10 are

enough to derive post . If we were to handle the first and third loop separately, we

would need the complex nonlinear invariants per while loop as described in Sect. 2.6.

Previous approaches could not guarantee that the first and third loops of our

example are always analyzed in lockstep. A naive self-composition approach never

performs lockstep execution of loops, and must always infer a non-relational invariant

for each loop. The approach employed by the Descartes [143] algorithm improves

upon this naive self-composition approach by attempting lockstep execution; however,

when all loops cannot be executed in lockstep, the algorithm selects an arbitrary loop

to handle independently before trying again. Here, if the first loop or third loop is se-

lected, then because the remaining loops cannot be executed in lockstep, Descartes

must, like the naive self-composition approach, infer non-relational invariants for each

loop. Sect. 3.2.1 describes my proposed algorithm for maximizing the number of loops

to be executed in lockstep that can help avoid inference of potentially difficult non-

relational invariants.
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Symmetry-Breaking. For the same program, and an RVP (referred to as RVP2)

with precondition 𝑖1 > 0∧ 𝑖2 ≥ 𝑖1∧ 𝑖1 = 𝑖3 and postcondition 𝑖1 > 0∧ 𝑖2 ≥ 𝑖1∧ 𝑖1 = 𝑖3,

consider a control-flow decision 𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 ≤ 20. We generate another

RVP involving the following set of programs:

assume(y1 > 20); while (i1 < 10) { x1 *= i1; i1++; }

assume(y2 > 20); while (i2 < 10) { x2 *= i2; i2++; }

assume(y3 ≤ 20); while (i3 < 10) { x3++; i3++; }

Similarly, decision 𝑦1 ≤ 20 ∧ 𝑦2 > 20 ∧ 𝑦3 > 20 generates yet another RVP over the

following:

assume(y1 ≤ 20); while (i1 < 10) { x1++; i1++; }

assume(y2 > 20); while (i2 < 10) { x2 *= i2; i2++; }

assume(y3 > 20); while (i3 < 10) { x3 *= i3; i3++; }

Both RVPs have the same precondition and postcondition as RVP2. It is evident

that both RVPs differ only in their subscripts; by taking one and swapping the sub-

scripts 1 and 3 due to symmetry, we arrive at the other. Thus, we can consider them

equivalent RVPs. Knowing the verification result for either RVP allows us to skip

verifying the other one by exploiting such symmetries.

3.2 Leveraging Relational Specifications

In this section, I describe the main components of the compositional framework, which

leverage relational specifications to simplify the verification subtasks. I first describe

a novel algorithm for inferring maximal sets of loops that can be executed in lockstep

(Sect. 3.2.1). Next, I describe a technique for handling conditionals (Sect. 3.2.2).

While this is similar to other prior work, the main purpose here is to set the stage for

our novel methods for exploiting symmetry (Sect. 3.2.3). For each of these compo-

34



Algorithm 1 Procedure for finding sets of loops to execute in lockstep

1: procedure CheckLockstep(set of programs {𝑃1, . . . , 𝑃𝑘})
2: Loops ← GetLoopPerProgram(𝑃1, . . . , 𝑃𝑘)
3: Inv ← InferInvariant(Loops)
4: Query ← ConstructQuery(Inv , Loops)
5: if Query has satisfying assignment 𝑀 then
6: Terminated ← ∅
7: Unfinished ← ∅
8: for 𝑃𝑖 with loop with guard Guard 𝑖(𝑢𝑖) do
9: if 𝑀(Guard 𝑖(𝑢𝑖)) is false then
10: Terminated ← Terminated ∪ {𝑃𝑖}
11: else
12: Unfinished ← Unfinished ∪ {𝑃𝑖}
13: return CheckLockstep(Terminated) ∪ CheckLockstep(Unfinished)

14: return {{𝑃1, . . . , 𝑃𝑘}}

nents, the framework relies on the relational precondition (and sometimes the post-

condition) to help simplify the verification tasks.

3.2.1 Synchronizing loops

Given a set of programs containing loops, the goal is to determine which ones can be

executed in lockstep. As demonstrated previously, relational invariants over lockstep

loops are often easier to derive than loop invariants over a single copy.

The algorithm CheckLockstep shown in Algorithm 1 takes as input a set of

programs with loops {𝑃1, . . . , 𝑃𝑘} and outputs a set of maximal classes of programs

with loops that can be executed in lockstep. The algorithm partitions its input set

of programs and recursively calls CheckLockstep on the partitions.

First, CheckLockstep gets the loops to be considered for each program and in-

fers a relational inductive invariant over the loop bodies by calling InferInvariant,

which synthesizes and returns 𝐼(�⃗�1, . . . , �⃗�𝑘) in the following for the 𝑘 loops provided as

arguments, each encoded as a triple ⟨Init 𝑖(�⃗�𝑖, �⃗�𝑖),Guard 𝑖(�⃗�𝑖),Tr 𝑖(�⃗�𝑖, �⃗�𝑖)⟩ as described
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in Chapter 2:

𝑝𝑟𝑒(�⃗�1, . . . , �⃗�𝑘) ∧
𝑘⋀︁

𝑖=1

Init 𝑖(�⃗�𝑖, �⃗�𝑖) =⇒ 𝐼(�⃗�1, . . . , �⃗�𝑘)

𝐼(�⃗�1, . . . , �⃗�𝑘) ∧
𝑘⋀︁

𝑖=1

Guard 𝑖(�⃗�𝑖) ∧ Tr 𝑖(�⃗�𝑖, �⃗�𝑖) =⇒ 𝐼(�⃗�1, . . . , �⃗�𝑘)

CheckLockstep then poses the following query:

¬

(︃(︁
𝐼(�⃗�1, . . . , �⃗�𝑘) ∧

𝑘⋁︁
𝑖=1

¬Guard 𝑖(�⃗�𝑖)
)︁

=⇒
𝑘⋀︁

𝑖=1

¬Guard 𝑖(�⃗�𝑖)

)︃
(3.1)

The left-hand side of the implication holds whenever one of the loops has terminated

(the relational invariant holds and at least one of the loop conditions must be false),

and the right-hand side holds only if all of the loops have terminated. If the formula

is unsatisfiable, then the termination of one loop implies the termination of all loops,

and all loops can be executed simultaneously [143]. In this case, the entire set of input

programs is one maximal class, and the set containing the set of all input programs

is returned.

Otherwise, CheckLockstep gets a satisfying assignment and partitions the in-

put programs into a set Terminated and a set Unfinished . The Terminated set con-

tains all programs 𝑃𝑖 whose guards Guard(�⃗�𝑖) are false in the model for the formula,

and the Unfinished set contains the remaining programs. The CheckLockstep al-

gorithm is then called recursively on both Terminated and Unfinished , with its final

result being the union of the two sets returned by these recursive calls.

The following theorem assumes that any relational invariant 𝐼(�⃗�1, . . . , �⃗�𝑘), gener-

ated externally and used by the algorithm, is stronger than any relational invariant

𝐼(�⃗�1, . . . , �⃗�𝑖−1, �⃗�𝑖+1, . . . , �⃗�𝑘) that could be synthesized over the same set of 𝑘 loops

with the 𝑖th loop removed.
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Theorem 3.2.1. For any call to CheckLockstep, it always partitions its set of

input programs such that for all 𝑃𝑖 ∈ Terminated and 𝑃𝑗 ∈ Unfinished, 𝑃𝑖 and 𝑃𝑗

cannot be executed in lockstep.

Proof. Assume that CheckLockstep has partitioned its set of programs into the

Terminated and Unfinished sets. Let 𝑃𝑖 ∈ Terminated , 𝑃𝑗 ∈ Unfinished be arbitrary

programs. Based on how the partitioning is performed, we know that there is a model

for Eq. 3.1 such that Guard 𝑖(�⃗�𝑖) does not hold and Guard 𝑗(�⃗�𝑗) does. We can thus

conclude that the following formula is satisfiable:

¬
(︁
𝐼(�⃗�1, . . . , �⃗�𝑘) ∧ ¬Guard 𝑖(�⃗�𝑖) =⇒ ¬Guard 𝑗(�⃗�𝑗)

)︁
From the assumption on the invariant synthesizer, we conclude that the following is

also satisfiable, indicating that 𝑃𝑖 and 𝑃𝑗 cannot be executed in lockstep:

¬
(︁
𝐼(�⃗�𝑖, �⃗�𝑗) ∧ ¬Guard 𝑖(�⃗�𝑖) =⇒ ¬Guard 𝑗(�⃗�𝑗)

)︁
where 𝐼(�⃗�𝑖, �⃗�𝑗) is the relational invariant for 𝑃𝑖 and 𝑃𝑗 that the invariant synthesizer

infers.

3.2.2 Synchronizing conditionals

Let two programs have forms if Q𝑖 then R𝑖 else S𝑖, where 𝑖 ∈ {1, 2} and R𝑖 and

S𝑖 are arbitrary blocks of code and could possibly have loops. Let them be a part of

some RVP, which generates four verification subproblems, where each RVP generated

corresponds to one of the four possible control-flow decisions. As seen in previous

sections, each of the four verification tasks could be expensive. In order to reduce the

number of verification tasks where possible, the verification approach presented here

uses the relational preconditions to filter out pairs of programs for which verification

conclusions can be derived trivially.

For 𝑘 programs of the form if Q𝑖 then R𝑖 else S𝑖 for 𝑖 ∈ {1, . . . , 𝑘} and precon-

dition 𝑝𝑟𝑒(�⃗�1, . . . , �⃗�𝑘), the verifier can simultaneously generate all possible combina-
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tions of decisions by querying a solver for all truth assignments to the Q𝑖s:

pre(�⃗�1, . . . , �⃗�𝑘) ∧
𝑘⋀︁

𝑖=1

𝑄𝑖 (3.2)

The result of this All-SAT query is used to generate sets of programs in subtasks.

For each assignment 𝑗, where each𝑄𝑖 is assigned a Boolean value 𝑣𝑖, the following set is

generated: {assume(V1); U1, . . . , assume (V𝑘); U𝑘} where for each 𝑖 ∈ {1, . . . , 𝑘},

if 𝑣𝑖 = ⊤, then V𝑖 = Q𝑖 and U𝑖 = R𝑖, else Vi = ¬Qi and U𝑖 = S𝑖. The verification

algorithm need only be applied on the resulting sets of programs. For example, in

the above RVP, if Q1 is equivalent to Q2 in all solutions, then the RVP reduces to

verification of just two pairs of programs:

assume(Q1); R1 and assume(Q2); R2

assume(¬Q1); S1 and assume(¬Q2); S2

3.2.3 Discovering and exploiting symmetries

Using the All-SAT query from Eq. 3.2 allows us to prune trivial RVPs. However,

as we have seen in Sect. 3.1, some of the remaining RVPs could be regarded as

equivalent due to symmetry. First, I discuss how to identify symmetries in formulas

syntactically, and then I show how to use such symmetries.

3.2.3.1 Identifying symmetries in formulas

Formally, symmetries in formulas are defined as permutations. Note that any permu-

tation 𝜋 of set {1, . . . , 𝑘} can be lifted to be a permutation of set {�⃗�1, . . . , �⃗�𝑘}.

Definition 3.2.1 (Symmetry). Let �⃗�1, . . . , �⃗�𝑘 be vectors of the same size over disjoint

sets of variables. A symmetry 𝜋 of a formula 𝐹 (�⃗�1, . . . , �⃗�𝑘) is a permutation of set

{�⃗�𝑖 | 1 ≤ 𝑖 ≤ 𝑘} such that 𝐹 (�⃗�1, . . . , �⃗�𝑘) ⇐⇒ 𝐹 (𝜋(�⃗�1), . . . , 𝜋(�⃗�𝑘)).

The task of finding symmetries within a set of formulas can be performed syn-

tactically by first canonicalizing the formulas, converting the formulas into a graph

38



Algorithm 2 Algorithm for constructing a graph to find symmetries.

1: procedure MakeGraph(𝐹 )
2: (𝑉,𝐸)← ({𝑣Id1 , . . . , 𝑣Id𝑘 },∅) where each 𝑣Id𝑖 has color(𝑣Id𝑖 ) = Id
3: for 𝑑 ∈ Clauses(𝐹 ) do (𝑉,𝐸)←MakeColoredAST(𝑑) ∪ (𝑉,𝐸)

4: for 𝑣 ∈ 𝑉 with 𝑥𝑖 ∈ vars(color(v)) do
5: 𝑉 ← (𝑉 ∖ {𝑣}) ∪ {Recolor(𝑣, 𝑣[𝑥𝑖 ↦→ 𝑥])}
6: 𝐸 ← 𝐸 ∪ {(𝑣, 𝑣Id𝑖 )}
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Figure 3.2: Graph with vertex names (outside the vertices) and colors (inside the vertices).

representation of their syntax, and then using a graph automorphism algorithm to

find the symmetries of the graph. I demonstrate how this can be done for a formula

𝜙 over Linear Integer Arithmetic with the following example.

Let 𝜙 = (𝑥1 ≤ 𝑥2 ∧ 𝑥3 ≤ 𝑥4) ∧ (𝑥1 < 𝑧2 ∨ 𝑥3 < 𝑧4). Note that this formula is

symmetric under a permutation of the subscripts that simultaneously swaps 1 with

3 and 2 with 4. Let {(𝑥1, 𝑧1), (𝑥2, 𝑧2), (𝑥3, 𝑧3), (𝑥4, 𝑧4)} be the vectors of variables. A

vector is identified by its subscript (e.g., (𝑥1, 𝑧1) is identified by 1).

The algorithm starts with canonicalizing the formula: 𝜙 = (𝑥1 < 𝑥2 ∨ 𝑥1 =

𝑥2) ∧ (𝑥3 < 𝑥4 ∨ 𝑥3 = 𝑥4) ∧ (𝑥1 < 𝑧2 ∨ 𝑥3 < 𝑧4). It then constructs a colored graph

for the canonicalized formula with the procedure in Algorithm 2. The algorithm

initializes a graph by the set of 𝑘 vertices 𝑣Id1 , . . . , 𝑣
Id
𝑘 with color Id (vertices 21-24 in

Figure 3.2), where 𝑘 is the number of identifiers. It then (Line 3) adds to the graph
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the union of the abstract syntax trees (AST) for the formula’s conjuncts, where each

vertex has a color corresponding to the type of its AST node. If a parent vertex

has a color of an ordering-sensitive operation or predicate, then the children should

have colors that include a tag to indicate their ordering (e.g., vertices 9 and 10 in

Figure 3.2 have colors with tags because their parent has color <, but vertices 11 and

12 do not have tags because their parent has color =). Next (Line 4), the algorithm

performs an appropriate renaming of vertex colors so that each indexed variable name

𝑥𝑖 is replaced with a non-indexed version 𝑥, while simultaneously adding edges from

each vertex with a renamed color to 𝑣Id𝑖 . The resulting graph for 𝜙 is shown in

Figure 3.2. Finally, the algorithm applies a graph automorphism finder to get the

following automorphism (in addition to the identity automorphism), which is shown

here in a cyclic notation where (𝑥 𝑦) means that 𝑥 ↦→ 𝑦 and 𝑦 ↦→ 𝑥 (vertices that map

to themselves are omitted):

(0 1)(3 5)(4 6)(7 8)(9 13)(10 14)(11 15)(12 16)(17 19)(18 20)(21 23)(22 24)

Only permutations of the vectors are of interest, so the algorithm projects out the

relevant parts of the permutation (21 23)(22 24) and maps them back to the vector

identifiers. The result is the following permutation on the identifiers:

𝜋 = {1 ↦→ 3, 2 ↦→ 4, 3 ↦→ 1, 4 ↦→ 2}

3.2.3.2 Exploiting symmetries

I now define the notion of symmetric RVPs and demonstrate the application of

symmetry-breaking to generate a single representative per equivalence class of RVPs.

Definition 3.2.2 (Symmetric RVPs). Two RVPs:

⟨𝑃𝑠, pre(�⃗�1, . . . , �⃗�𝑘), post(�⃗�1, . . . , �⃗�𝑘)⟩ and ⟨𝑃𝑠′, pre(�⃗�1, . . . , �⃗�𝑘), post(�⃗�1, . . . , �⃗�𝑘)⟩,

where 𝑃𝑠 = {𝑃1, . . . , 𝑃𝑘}, and 𝑃𝑠′ = {𝑃 ′
1, . . . , 𝑃

′
𝑘}, are called symmetric under a

permutation 𝜋 iff
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1. 𝜋 is a symmetry of formula pre(�⃗�1, . . . , �⃗�𝑘) ∧ post(�⃗�1, . . . , �⃗�𝑘)

2. for every 𝑃𝑖 ∈ 𝑃𝑠 and 𝑃𝑗 ∈ 𝑃𝑠′, if 𝜋(𝑖) = 𝑗, then 𝑃𝑖 and 𝑃𝑗 have the same

number of inputs and outputs and have logically equivalent encodings for the

same set of input variables �⃗�𝑖 and output variables �⃗�𝑖

As seen in Sect. 3.2.3.1, identification of symmetries could be made purely on the

syntactic level of the relational preconditions and postconditions. For each detected

symmetry, it remains to check equivalence between the corresponding programs’ en-

codings, which can be formulated as an SMT problem.

I will describe a simple but intuitive approach that allows the approach to exploit

symmetries. First, identify the set of symmetries using pre ∧ post . Then, solve the

All-SAT query from Eq. 3.2 and get a reduced set R of RVPs (i.e., one without all

trivial problems). For each RVP 𝑖 ∈ R, perform the relational verification only if no

symmetric RVP 𝑗 ∈ R has already been verified. Thus, the most expensive part of the

routine, checking equivalence of RVPs, is performed on demand and only on a subset

of all possible pairs ⟨RVP 𝑖,RVP 𝑗⟩.

Alternatively, in some cases (e.g., for parallelizing the algorithm) it might help to

identify all symmetric RVPs prior to solving the All-SAT query from Eq. 3.2. From

this set, it is possible to generate symmetry-breaking predicates (SBPs) [54] and

conjoin them to Eq. 3.2. Constrained with SBPs, this query will have fewer models,

and will contain a single representative per equivalence class of RVPs. I describe how

to construct SBPs in more detail in the next section.

3.2.3.3 Generating Symmetry-Breaking Predicates (SBPs)

SBPs have previously been applied in pruning the search space explored by SAT

solvers [54, 7]. Traditionally, techniques construct SBPs based on symmetries in truth

assignments to the literals in the formula, but SBP-construction can be adapted to
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be based on symmetries in truth assignments to conditionals, allowing for symmetry-

breaking in the setting considered here.

An SBP can be constructed by treating each condition the way a literal is treated

in existing SBP constructions. In particular, it is possible to construct the common

Lex-Leader SBP used for predicate logic [54], which in this setting will force a solver to

choose the lexicographically least representative per equivalence class for a particular

ordering of the conditions. For the ordering of conditions where Q𝑖 ≤ Q𝑗 iff 𝑖 ≤ 𝑗 and

a set of symmetries 𝑆 over {1, . . . , 𝑘}, it is possible to construct a Lex-Leader SBP

𝑆𝐵𝑃 (𝑆) =
⋀︀

𝜋∈𝑆 𝑃𝑃 (𝜋) with the more efficient predicate chaining construction [7],

where it is the case that

𝑃𝑃 (𝜋) = 𝑝min(𝐼) ∧
⋀︁
𝑖∈𝐼

𝑝𝑖 =⇒ 𝑔prev(i ,I ) =⇒ 𝑙𝑖 ∧ 𝑝next(i ,I )

and that 𝐼 is the support of 𝜋 with the last condition for each cycle removed, min(𝐼)

is the minimal element of 𝐼, prev(𝑖, 𝐼) is the maximal element of 𝐼 still less than 𝑖

or 0 if there is none, next(𝑖, 𝐼) is the minimal element of 𝐼 still greater than 𝑖 or 0 if

there is none, 𝑝0 = 𝑔0 = ⊤, 𝑝𝑖 is a fresh predicate for 𝑖 ̸= 0, 𝑔𝑖 = Q𝜋(𝑖) =⇒ Q𝑖 for

𝑖 ̸= 0, and 𝑙𝑖 = Q𝑖 =⇒ Q𝜋(𝑖).

After the SBP is constructed, it can be conjoined to the All-SAT query in Eq. 3.2.

The solver now generates sets of programs that, when combined with the relational

precondition and postcondition, form a set of irredundant RVPs.

Example. Let us consider how SBPs can be applied to RVP2 from Sect. 3.1 to

avoid generating two of the eight RVPs we would otherwise generate.

First, we see that our three programs are all copies of the same program and are

at the same program point, so they will have the same encoding. Next, we find the

set of permutations 𝑆 over {1, 2, 3} such that for each 𝜋 ∈ 𝑆, we have that 𝑖1 >

0∧ 𝑖2 ≥ 𝑖1 ∧ 𝑖1 = 𝑖3 iff 𝑖𝜋(1) > 0∧ 𝑖𝜋(2) ≥ 𝑖𝜋(1) ∧ 𝑖𝜋(1) = 𝑖𝜋(3). In this case, we have that

𝑆 is the set of permutations {{1 ↦→ 1, 2 ↦→ 2, 3 ↦→ 3}, {1 ↦→ 3, 2 ↦→ 2, 3 ↦→ 3}}. Now,
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Algorithm 3 Procedure for solving relational verification problems.

1: procedure Verify(pre,Current , Ifs ,Loops , post)
2: while Current ̸= ∅ do
3: if ProcessStatement(pre, 𝑃𝑖, Ifs ,Loops , post) = safe then return safe

4: if Loops ̸= ∅ then HandleLoops(pre,Loops , post)
5: else if Ifs ̸= ∅ then HandleIfs(pre, Ifs ,Loops , post)
6: else return unsafe

we construct a Lex-Leader SBP (using the predicate chaining construction described

above):

𝑝1 ∧ (𝑝1 =⇒ ((𝑦1 > 20) =⇒ (𝑦2 > 20)))

where 𝑝1 is a fresh predicate. Conjoining this SBP to Eq. 3.2, leads to the RVPs

arising from the control-flow decisions 𝑦1 > 20∧ 𝑦2 > 20∧ 𝑦3 ≤ 20 and 𝑦1 > 20∧ 𝑦2 ≤

20 ∧ 𝑦3 ≤ 20 no longer being generated.

3.3 Instantiation of Strategies in Forward Analysis

I now describe an instantiation of the proposed strategies in a verification algorithm

based on forward analysis using a strongest-postcondition computation. Other in-

stantiations, e.g., on top of a CHC solver based on Property-Directed Reachability

(PDR) [113] are also possible.

Given an RVP in the form of a Hoare triple {Pre} 𝑃1|| · · · ||𝑃𝑘 {Post}, where ||

denotes parallel composition, the top-level Verify procedure takes as input the rela-

tional specification pre = Pre and post = Post , the set of input programs Current =

{𝑃1, . . . , 𝑃𝑘}, and empty sets Loops and Ifs . It uses a strongest-postcondition compu-

tation to compute the next Hoare triple at each step until it can conclude the validity

of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-

joint sets of programs: one for programs that are currently being processed (Current),
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one for programs that have been processed up until a loop (Loops), and one for

programs that have been processed up until a conditional statement (Ifs). The al-

gorithm processes statements in each program independently, with ProcessState-

ment choosing an arbitrary interleaving of statements from the programs in Current .

When the algorithm encounters the end of a program in its call to ProcessState-

ment, it removes this program from the Current set. At this point, the algorithm

returns safe if the current Hoare triple is proven valid. When a program has reached

a point of control-flow divergence and is processed by ProcessStatement, it is

removed from Current and added to the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =

∅), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where pos-

sible; when a set of loops are able to be executed in lockstep, HandleLoops com-

putes their postconditions before placing the programs into the Terminated set.

After all loops have been placed in the Terminated set and a new precondition

pre ′ has been computed, rather than returning Terminated , HandleLoops invokes

Verify(pre ′,Terminated , Ifs ,∅, post).

Handling Conditionals. When Current = Loops = ∅, Verify handles con-

ditional statements. HandleIfs exploits symmetries by using the All-SAT query

with Lex-Leader SBPs as described in Sect. 3.2 and calls Verify on each generated

verification problem.

3.4 Implementation and Evaluation

To evaluate the effectiveness of increased lockstep execution of loops and symmetry-

breaking, I implemented the algorithm from Sect. 3.3 on top of the Descartes tool
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for verifying 𝑘-safety properties, i.e., RVPs over 𝑘 identical Java programs. I im-

plemented two variants: Syn uses only synchrony (i.e., no symmetry is used), while

Synonym uses both. All implementations (including Descartes) use the same

guess-and-check invariant generator (the same originally used by Descartes, but

modified to generate more candidate invariants). Synonym computes symmetries in

preconditions and postconditions only when all program copies are the same. For this

set of examples, it sufficed to compute symmetries simply by checking if each possible

permutation leads to equivalent formulas. The implementation includes the syntactic

symmetry-finding algorithm from Sect. 3.2.3.1, though it is not used for evaluation

here due to its high overhead in using an external tool for finding graph automor-

phisms. I compare the performance of my implementations to Descartes.While

there are several tools for relational verification (e.g. Rosette/Unbound [114],

VeriMapRel [59], Reve [75], MoCHi [75], SymDiff [104]), most of these do not

handle Java programs, and lack support for 𝑘-safety verification for 𝑘 greater than 2.

I use two metrics for comparison: the time taken and the number of Hoare triples pro-

cessed by the verification procedure. All experiments were conducted on a MacBook

Pro, with a 2.7GHz Intel Core i5 processor and 8GB RAM.

3.4.1 Stackoverflow Benchmarks

The first set of benchmarks considered are the Stackoverflow benchmarks originally

used to evaluate Descartes. These implement (correctly or incorrectly) the Java

Comparator or Comparable interface, and check whether or not their compare func-

tions satisfy the following properties:

P1: ∀𝑥, 𝑦.sgn(compare(𝑥, 𝑦)) = −sgn(compare(𝑦, 𝑥))

P2: ∀𝑥, 𝑦, 𝑧.(compare(𝑥, 𝑦) > 0 ∧ compare(𝑦, 𝑧) > 0) =⇒ compare(𝑥, 𝑧) > 0

P3 ∀𝑥, 𝑦, 𝑧.(compare(𝑥, 𝑦) = 0) =⇒ (sgn(compare(𝑥, 𝑧)) = sgn(compare(𝑦, 𝑧)))
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Table 3.1: Total times (in seconds) and Hoare triple counts (HTC) for Stackoverflow benchmarks.
Improv reports the total factor of improvement over Descartes, where the number of examples is
given in parentheses.

Prop
Descartes Syn Synonym
Time HTC Time Improv HTC Improv Time Improv HTC Improv

P1 3.11 4422
1.91 1.39 (27) 2255 1.69 (27) 1.82 1.32 (25) 2401 1.82 (32)
0.57 0.789 (6) 752 0.809 (6) 0.87 0.816 (8) 48 0.979 (1)

P2 24.6 13434
7.83 2.62 (20) 3285 3.081 (16) 7.31 2.80 (19) 3224 3.140 (16)
4.98 0.823 (13) 4638 0.714 (17) 5.1 0.816 (14) 4638 0.714 (17)

P3 18.85 10938
5.22 2.92 (20) 1565 4.36 (16) 5.22 2.91 (19) 1537 4.74 (16)
6.18 0.584 (13) 6600 0.623 (17) 6.16 0.594 (14) 6600 0.623 (17)

(One of the original 34 Stackoverflow examples is excluded from the evaluation here

because of the inability of the invariant generator to produce a suitable invariant.)

I compare the results of running Syn and Synonym with the results of running

Descartes for each property in Figure 3.3 and Figure 3.4 respectively. Examples

for which my tools perform as well as or better than Descartes are shown in blue

and the rest in red. The total times and Hoare triple counts for running Descartes

and our implementations can be seen in Table 3.1. For each property in the table,

the results for Syn and Synonym are divided into those for examples where they

exhibit a factor of improvement over Descartes that is greater or equal to 1 (top)

and those for which they do not (bottom).

Because property P1 contains a symmetry, there is a noticeable improvement in

terms of number of Hoare triples with the use of symmetry for this property; however,

the overhead of computing symmetries leads to Synonym performing more slowly

than Syn even for some examples that exhibit reduced Hoare triple counts. Property

P1 is also the easiest to prove (all implementations can verify each example in under

0.3 seconds), so the overheads contribute more significantly to the runtime. For

examples on which our implementations do not perform as well as Descartes, we

perform reasonably closely to Descartes. These examples are typically smaller, and

again overheads play a larger role in our poorer performance.
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Figure 3.3: Comparison of times and Hoare triple counts between Syn and Descartes on Stack-
overflow examples.
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Figure 3.4: Comparison of times and Hoare triple counts between Synonym and Descartes on
Stackoverflow examples.
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3.4.2 Modified Stackoverflow Benchmarks

The original Stackoverflow examples are fairly small, with all implementations taking

under 6 seconds to verify any example. To assess how the tools perform on larger

examples, I modified several of the larger Stackoverflow comparator examples to be

longer, take more arguments, and contain more control-flow decisions. The resulting

functions take three arguments and pick the “largest” object’s id, where comparison

among objects is performed based on the original Stackoverflow example code. (Ties

are broken by choosing the least id.) We check whether these pick functions satisfy

the following properties that allow reordering input arguments:

P13: ∀𝑥, 𝑦, 𝑧.pick(𝑥, 𝑦, 𝑧) = pick(𝑦, 𝑥, 𝑧)

P14: ∀𝑥, 𝑦, 𝑧.pick(𝑥, 𝑦, 𝑧) = pick(𝑦, 𝑥, 𝑧) ∧ pick(𝑥, 𝑦, 𝑧) = pick(𝑧, 𝑦, 𝑥)

Note that P13 allows swapping the first two input arguments, while P14 allows

any permutation of inputs, a useful hyperproperty.

Figure 3.5 shows a comparison of the performance of Syn and Synonym with the

results of running Descartes for property P13. Again, examples for which my tools

perform as well as or better than Descartes are shown in blue and the rest in red.

The total times and Hoare triple counts for running the tools on property P13 are

shown in Table 3.2. For these larger examples, Hoare triple counts are more reliably

correlated with the time taken to perform verification. Syn outperforms Descartes

on 14 of the 16 examples, and Synonym outperforms both Descartes and Syn on

all 16 examples.

Figure 3.6 shows a comparison of the performance of Syn and Synonym with the

results of running Descartes for property P14. The times and Hoare triple counts

for property P14 are shown in Table 3.3. For this property, note that Descartes

is unable to verify any of the examples within a one-hour timeout. Meanwhile, Syn

is able to verify 10 of the 16 examples without exceeding the timeout. Exploiting
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Table 3.2: Verifying P13 for Modified Stackoverflow examples. Times (in seconds) and Hoare triple
counts (HTC).

Example
Descartes Syn Synonym

Time HTC Time HTC Time HTC
ArrayInt-pick3-false-simple 1.71 2573 1 1355 0.64 682
ArrayInt-pick3-false 1.55 2591 1.06 1439 0.8 724
ArrayInt-pick3-true-simple 1.71 2573 1.03 1355 0.65 682
ArrayInt-pick3-true 1.55 2591 1.08 1439 0.81 724
Chromosome-pick3-false-simple 0.9 1115 0.9 883 0.53 446
Chromosome-pick3-false 2.51 2891 2.94 3019 1.59 1514
Chromosome-pick3-true-simple 0.9 1115 0.9 883 0.53 446
Chromosome-pick3-true 2.51 2891 2.96 3019 1.59 1514
PokerHand-pick3-false-part1 5.87 5825 0.42 359 0.46 359
PokerHand-pick3-false-part2 9.74 10589 0.85 323 0.86 323
PokerHand-pick3-false 16.91 16475 0.73 159 0.79 159
PokerHand-pick3-true-part1 5.83 5825 3.98 3503 2.4 1756
PokerHand-pick3-true-part2 9.8 10565 7.36 5933 4.53 2971
PokerHand-pick3-true 17.25 16475 12.1 9293 7.34 4651
Solution-pick3-false 76.4 99910 25.05 20645 20.42 10327
Solution-pick3-true 64.5 99910 19.66 20645 15.21 10327

Total 219.64 283914 82.02 74252 59.15 37605
Improvement 1 1 2.68 3.8237 3.713 7.5499

Table 3.3: Verifying P14 for Modified Stackoverflow examples. Times (in seconds) and Hoare triple
counts (HTC). - indicates that no sufficient invariant could be inferred.

Example
Descartes Syn Synonym
Time HTC Time HTC Time HTC

ArrayInt-pick3-false-simple TO TO 4.12 1938 4.66 1734
ArrayInt-pick3-false TO TO 4.92 2017 6.03 1500
ArrayInt-pick3-true-simple TO TO 321.15 140593 170.43 58586
ArrayInt-pick3-true TO TO 366.98 149125 240.25 62141
Chromosome-pick3-false-simple TO TO 47.8 14097 1.67 834
Chromosome-pick3-false TO TO 264.21 93052 4.91 3043
Chromosome-pick3-true-simple TO TO 299.51 79613 135.56 33179
Chromosome-pick3-true TO TO TO TO 848.22 225044
PokerHand-pick3-false-part1 TO TO 0.57 391 0.73 391
PokerHand-pick3-false-part2 TO TO 0.81 228 0.81 228
PokerHand-pick3-false - - - - - -
PokerHand-pick3-true-part1 TO TO 2277.03 819553 1272.58 341486
PokerHand-pick3-true-part2 TO TO - - - -
PokerHand-pick3-true - - - - - -
Solution-pick3-false TO TO TO TO TO TO
Solution-pick3-true TO TO TO TO TO TO

symmetries here exhibits an obvious improvement, with Synonym not only being

able to verify the same examples as Syn, with consistently faster performance on the

larger examples, but also being able to verify an additional example within an hour.
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Figure 3.5: Comparison of times and Hoare triple counts between Syn and Descartes, Synonym
and Descartes, and Synonym and Syn on Property P13 for modified Stackoverflow examples.
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Figure 3.6: Comparison of times and Hoare triple counts between Syn and Descartes, Synonym
and Descartes, and Synonym and Syn on Property P14 for modified Stackoverflow examples for
which invariants were inferred.

52



Summary of experimental results. Our experiments indicate that our per-

formance improvements are consistent: on all Descartes benchmarks (in Table 3.1,

which are all small) our techniques either have low overhead or show some improve-

ment despite the overhead; and on modified (bigger) programs they lead to significant

improvements. In particular, we report (Table 3.2) speedups up to 21.4x (on an exam-

ple where the property doesn’t hold) and 4.2x (on an example where it does). More

importantly, we report (Table 3.3) that Descartes times out on 14 examples, where

of these Synonym times out for 2 and cannot infer an invariant for one example.

3.5 Related Work

In this section, I will describe work related to what was presented in this chapter. In

particular, I will mention related relational and hyperproperty verification techniques,

discuss CHL in more detail due to its relevance to the work described in this chapter,

and finally describe efforts in using symmetry that inspired the presented symmetry-

breaking technique.

3.5.1 Relational and Hyperproperty Verification

As mentioned in Chapter 2, automatic efforts for relational verification reduce re-

lational program verification to safety verification. They typically use composition

or program copies or some kind of product program construction [148, 28, 27, 48,

89, 25, 26, 104, 144, 75, 100, 59, 113, 66, 115], with a possible reduction to CHC

solving [115, 75, 100, 59, 113]. Similarly to the strategy for synchrony used in Syn-

onym, most of them attempt to leverage similarity (structural or functional) in pro-

grams to ease verification. Synchronizing parts of programs can be done syntacti-

cally [143, 115, 155], which may result in failing to find an alignment for which the

underlying solver can find suitable relational invariants. Otherwise, this synchro-
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nization can be done semantically [139, 44], in a property-directed or property-aware

fashion.

Other relational verification approaches avoid explicitly constructing a product

program. Some use program logics to work with Hoare triples that are, in some

sense, relational [143, 29, 31, 152, 21] or construct product programs implicitly [70].

Still others use decomposition instead of composition [13, 32], employ reinforcement

learning [42], or use customized theories with theorem proving [14, 149] instead. While

CHL can and has been fully automated, of the many other relational program logics

that can be used for reasoning and proving properties about relational programs [31,

152, 3, 21], the majority are used within proof assistants rather than in the context

of fully automated verification. Some, such as the work by Banerjee et al. [21],

allow for more automation, generating verification conditions that can be translated

to and discharged by SMT-based backend tools. Many of these program logics also

capture more elaborate program features than, e.g., CHC-based methods can [68, 38],

incorporating features from separation logic to reason about the heap [152, 21] or

higher-order programs [3], making them harder to automate.

Note that, compared with Synonym, these techniques typically have less focus

on leveraging relational specifications to simplify verification tasks and rather lever-

age only program structure; even in the case where synchronization is done in a

property-directed fashion [139] or where modular relational specifications are taken

into account [66, 89], the emphasis is on the semantics of the properties rather than

their syntactic structure. Furthermore, none of these techniques consider symmetries

among the programs or program copies being considered. The techniques employed

by Synonym should be able to be applied on top of the mentioned approaches.

There are also some similarities between relational verification and verification of

concurrent/parallel programs, as would be expected from the ability to use parallel

composition in order to reduce the relational verification problem to a verification
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problem over the resulting parallel program. In examining these similarities, it is im-

portant to note that one does not need to consider different orderings in interleavings

of procedures in the composed program for a relational verification problem, provided

that the original programs in the relational verification problem are single-threaded.

Since the procedures in the composition are independent, it suffices to explore any

one ordering. In a concurrent or parallel program, a typical verifier [80, 76] would

use visible operations (i.e., synchronization operations or communication on shared

state) as synchronizing points in the composed program. In the work presented in

this chapter as well as other approaches that use synchrony [143, 148], this selection

is (ideally) made based on the structure of the component programs and the ease of

utilizing or deriving relational assertions for the code fragments.

3.5.2 Cartesian Hoare Logic

The work most closely related to that presented in this chapter is by Sousa and Dil-

lig [143], which proposed Cartesian Hoare Logic (CHL) for proving 𝑘-safety properties

and the tool Descartes for automated reasoning in CHL. In addition to the core

program logic, CHL includes additional proof rules for loops, referred to as Cartesian

Loop Logic (CLL). A generalization of CHL, called Quantitative Cartesian Hoare

Logic was subsequently used by Chen et al. [41] to detect side-channel vulnerabilities

in cryptographic implementations.

In terms of comparison, neither CHL nor CLL force alignment at conditional

statements or take advantage of symmetries. The algorithm presented for identifying

a maximal set of lockstep loops is novel and can be used in other methods that

do not rely on CHL/CLL. On the other hand, CLL proof rules allow not only fully

lockstep loops, but also partially lockstep loops. Although we did not consider it here,

the maximal lockstep-loop detection algorithm can be combined with their partial

lockstep execution to further improve the efficiency of verification. For example,
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applying the Fusion 2 rule from CLL to our example while loops generated from

RVP1 (Sect. 3.1) would result in three subproblems and require reasoning twice about

the second copy’s loop finishing later. When combined with maximal lockstep-loop

detection, we could generate just two subproblems: one where the first and third

loops terminate first, and another where the second loop terminates first.

3.5.3 Symmetry

Despite the lack of relational property verifiers that exploit symmetry in programs or

in relational specifications, symmetry has been widely applied to other domains. In

particular, symmetry has been used very successfully in model checking parametric

finite state systems [67, 46, 96] and concurrent programs [64].

The work described here differs from these efforts in two main respects. First, the

parametric systems considered in these efforts have components that interact with

each other or share variables. Second, the correctness specifications are also para-

metric, usually single-index or double-index properties in a propositional (temporal)

logic. In contrast, in our RVPs, the individual programs are independent and do not

share any common variables. The only interaction between them is via relational

specifications. Furthermore, we discover symmetries in these relational specifications

over multi-index variables, expressed as formulas in first-order theories (e.g., linear

integer arithmetic). We then exploit these symmetries to prune redundant RVPs

during verification.

Finally, specific applications may impose additional synchrony requirements per-

taining to visibility. For example, one may want to check for information leaks from

private inputs to public outputs not only at the end of a program but at other speci-

fied intermediate points, or information leakage models for side-channel attacks may

check for leaks based on given observer models [6]. Such requirements can be viewed

as relational specifications at selected synchronizing points in the composed program.
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Again, we can leverage these relational specifications to simplify the resulting verifi-

cation subproblems.

57



Chapter 4

Verification of safety properties of

interprocedural programs

As mentioned in Chapter 2, automated techniques for modular reasoning about in-

terprocedural recursive programs exploit the inherent modularity in a program by

deriving a summary for each procedure. In particular, recall that a popular modern

approach is to encode interprocedural program verification problems as Constrained

Horn Clauses (CHCs) [84], in which uninterpreted predicates represent placeholders

for procedure summaries. A CHC solver then finds interpretations for these predi-

cates such that these interpretations correspond to summaries, enabling generation

of procedure summaries. In this chapter, I will describe an automated technique

for modular reasoning about interprocedural programs that addresses two main chal-

lenges in a CHC-style approach to verifying interprocedural programs: the handling

of mutually recursive procedures and the scalability of summary inference.

Mutual recursion is a common feature in functional programming and is used

widely in programs that traverse over mutually recursive data structures, such as

programs that operate on abstract syntax trees or recursive descent parsers. Despite

the prevalence and importance of mutual recursion in such domains, prior to this
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work, existing CHC-solving approaches did not handle mutual recursion well [103,

112, 95, 149, 39, 63, 134]. Solving this challenge addresses a gap in the capabilities

of CHC solvers.

The challenge of scalability, mentioned briefly in Chapter 2, is ubiquitous in any

verification effort for programs of large enough size. In the context of deductive

modular verification and CHC solving, scalability is often pitted against relevance,

where considering less of the program leads to the inference of procedure summaries

that are less relevant to proving the property in the specification. Existing deductive

techniques for CHC solving tend to sit at one end or the other of the scalability-

relevance trade-off [103, 112]; having a way to adjust the trade-off between scalability

of summary inference and the relevance of the inferred summaries, as the proposed

technique here provides, enhances the landscape of existing deductive CHC-solving

techniques.

My proposed technique addresses both of these two challenges with the high-level

strategy of leveraging program structure during solving and learning relevant facts.

In typical approaches to program verification based on CHC-solving, the program

structure may not be maintained when encoding programs as CHCs, especially in

a monolithic CHC encoding in which procedures are inlined. As a result, while the

proof search proceeds to explore more of the program in each step of CHC solving,

the parts that are explored may not reflect any structure in the program call graph.

In such cases, although the CHC-solving approach may be modular with respect to

a system of CHCs in that it derives each predicate’s interpretation separately, this

modularity may not correspond to a modular consideration of the original program’s

procedures. Furthermore, even if the program structure is maintained during the

encoding of a program into CHCs, techniques may still ignore program structure

during CHC solving.
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In contrast, our method both maintains the structure of the call graph in the

CHCs during encoding and uses it to guide proof search during CHC solving.

For further improving scalability beyond enabling more modularity within the

CHC encoding, our approach ensures that the backend SMT queries are always

bounded in size, even when more of the program is explored. Bounding the queries’

size helps maintain scalability and avoid learning over-specialized facts. Bounding is

achieved by leveraging the call graph of the program, i.e., analyzing a procedure in

the context of a bounded number of levels in the call graph. Furthermore, the notion

of a bounded environment enables the technique to refer to bounded call paths in the

program and learn special lemmas, called EC (Environment-Call) Lemmas, which

capture relationships among summaries of different procedures on such paths. These

lemmas are beneficial in handling mutual recursion.

Note that other non-CHC-based program analysis techniques also trade off scala-

bility and relevance by considering a bounded number of levels in a call graph, e.g.,

in bounded context-sensitivity or 𝑘-sensitive pointer/alias analysis [118], stratified

inlining [106], and depth cutoff [97] in program verification. However, other than

Spacer [103], which is restricted to 𝑘 = 1 bounded environments, existing CHC

solvers do not use bounded environments to limit size of the SMT queries.

The work presented in this chapter has previously been presented and published

at a conference [125].

4.1 Motivating Example

In this section, I will introduce a motivating example in the form of the program

shown in Figure 4.1a. This motivating example will be used in subsequent sections

that introduce notions employed by the algorithm, such as derivation trees, bounded

contexts, and bounded environments, to provide insights into these notions.
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In Figure 4.1a, the procedures e and o are defined mutually recursively and return

true iff their argument is respectively even or odd. Procedure f returns the (always-

even) result of calling h on g’s result, where g returns an arbitrary odd number and

h adds one to its input. The safety specification is that e(f()− 1) never holds.

The CHC encoding of this verification problem is shown in Figure 4.1b. We aim to

infer interpretations of the predicates in the system of CHCs that correspond to over-

approximate procedure summaries. These interpretations should constitute a solution

for the system of CHCs. There is a one-to-one mapping from each predicate in the

CHC encoding to a procedure of the original program, so I will refer to predicates

and procedures interchangeably in the sequel.

Throughout verification, we maintain context-insensitive over- and under-

approximate summaries for all procedures, each of which captures both pre- and

post-conditions of its procedure. In particular, for each procedure in the system

of CHCs, we maintain two mappings: over-approximate mapping 𝑂 and under-

approximate mapping 𝑈 , where 𝑂 maps a predicate to an interpretation constituting

an over-approximate summary and 𝑈 maps a predicate to an interpretation con-

stituting an under-approximate summary. All over- (resp. under-) approximate

summaries are initially ⊤ (resp. ⊥), allowing for all (resp. no) behaviors. At each

step, we choose a target predicate 𝑝 and its bounded environment, and then update

𝑝’s summaries based on the results of SMT queries on over- or under-approximations

of bodies of CHCs whose heads contain 𝑝. We also allow the bounded environment

to be over- or under-approximated, leading to four kinds of SMT queries. These

queries let us both over- and under-approximate any predicate, regardless of whether

it corresponds to a procedure that is called before or after the target procedure,

unlike Spacer [103] or Smash [82], which use two kinds of SMT queries.

Table 4.1 lists the non-trivial verification steps that update various procedure sum-

maries for the example. (Steps that do not update any summary are not listed.) The
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main () {

assert ¬(e(f() - 1));

}

f() {

return h(g());

}

g() {

x := havoc ();

return 2*x + 1;

}

h(x) {

return x + 1;

}

e (x) {

assume (x ≥ 0);

if (x = 0)

return true;

else return o(x - 1);

}

o (x) {

assume (x ≥ 1);

if (x = 1)

return true;

return e(x - 1);

}

(a)

𝑓(𝑥) ∧ 𝑒(𝑥− 1, 𝑦) ∧ 𝑦 ⇒⊥
𝑔(𝑥) ∧ ℎ(𝑥, 𝑦) ⇒ 𝑓(𝑦)

𝑦 = 2𝑥+ 1 ⇒ 𝑔(𝑦)

𝑦 = 𝑥+ 1 ⇒ ℎ(𝑥, 𝑦)

𝑥 ≥ 0 ∧ 𝑥 = 0 ⇒ 𝑒(𝑥,⊤)

𝑥 ≥ 0 ∧ 𝑥 ̸= 0 ∧ 𝑜(𝑥− 1, 𝑦) ⇒ 𝑒(𝑥, 𝑦)

𝑥 ≥ 1 ∧ 𝑥 = 1 ⇒ 𝑜(𝑥,⊤)

𝑥 ≥ 1 ∧ 𝑥 ̸= 1 ∧ 𝑒(𝑥− 1, 𝑦) ⇒ 𝑜(𝑥, 𝑦)

(b)

main

e

o

f

g h

(c)

main

e

o

e

f

g h

(d)

Figure 4.1: Example: (a) source code, (b) CHC encoding, (c) call graph, and (d) final derivation
tree.

Table 4.1: Relevant steps to verify program in Figure 4.1a.

Call graph path Environment Target Deductions (universally quantified)
1 main→ e Over Under 𝑥 = 0 ∧ 𝑦 = ⊤ ⇒ e(𝑥, 𝑦)
2 main→ f→ h Over Under 𝑦 = 𝑥+ 1⇒ ℎ(𝑥, 𝑦)
3 main→ e→ o Over Under 𝑥 = 1 ∧ 𝑦 = ⊤ ⇒ o(𝑥, 𝑦)
4 main→ f→ g Over Under 𝑦 mod 2 ̸= 0⇒ 𝑔(𝑦)
5 main→ f→ g Under Over 𝑔(𝑦)⇒ 𝑦 mod 2 ̸= 0
6 main→ f→ h Under Over ℎ(𝑥, 𝑦)⇒ 𝑦 = 𝑥+ 1
7 main→ f Over Under 𝑦 mod 2 = 0⇒ 𝑓(𝑦)
8 main→ f Under Over 𝑓(𝑦)⇒ 𝑦 mod 2 = 0

9
main → e →
o→ e

Over Over (o(𝑥, 𝑦)⇒ 𝑦 ⇔ ((1 + 𝑥) mod 2 = 0))⇒
(e(𝑚,𝑛)⇒ 𝑛⇔ (𝑚 mod 2 = 0))

10 main→ e→ o Over Over o(𝑥, 𝑦)⇒ 𝑦 ⇔ ((1 + 𝑥) mod 2 = 0))
e(𝑥, 𝑦)⇒ 𝑥 > 1 ∧ 𝑦 ⇔ ((1 + 𝑥) mod 2 = 0)

first column lists the call path that is visited in each step, in which the last call is the

current target procedure whose summary is updated, and the call path is used to gen-

erate its bounded environment. The “Environment” (resp. “Target”) column shows

62



whether the bounded environment (resp. target) is over- or under-approximated. The

“Deductions” column lists deductions resulting from SMT queries in that step; up-

dates to over- or under-approximate summaries in 𝑂 or 𝑈 are made following these

deductions. Note that formulas in this column (and in the remainder of this sec-

tion) are implicitly universally quantified over all variables and involve uninterpreted

predicates (e.g., h(x, y) in row 2). Each uninterpreted predicate implicitly represents

the actual semantics of the procedure that it encodes, where 𝑂 and 𝑈 are explicitly-

maintained mappings to over- and under-approximations of these semantics. Except

in row 9, all these formulas are implications that can be used to update the procedure

summaries in 𝑂 and 𝑈 . Row 9 shows an implication between two such formulas –

this is an instance of an EC lemma (described later in more detail), which is used to

capture the relationship between mutually recursive procedures. The EC lemma on

Row 9 expresses a relates the behaviors of the o and e procedure.

4.2 Using the Program Call Graph

The algorithm described in this chapter chooses environment-target pairs based on the

call graph of the program, shown in Figure 4.1c. Note that this call graph’s structure

is also preserved in the CHCs in Figure 4.1b. For any uninterpreted predicate 𝑝 that

is the head of a CHC, for any uninterpreted predicate 𝑐 in the body of the CHC, there

is an edge from 𝑝 to 𝑐 in the call graph.

During exploration, the algorithm maintains explored paths through the call graph

in a data structure called a derivation tree, initially consisting of only one node that

represents the body of entry procedure main. Figure 4.1d shows a representation

of the tree just before the algorithm converges. The subset 𝐴 of nodes available to

be explored is also maintained, and it is this subset that guides exploration in our

algorithm.
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Definition 4.2.1 (Derivation Tree). A derivation tree 𝐷 = ⟨𝑁,𝐸⟩ for a system of

CHCs C is a tree with nodes 𝑁 and edges 𝐸, where each 𝑛 ∈ 𝑁 except the root node

is labeled with uninterpreted predicate pr(𝑛), a context query CHC ctx (𝑛), and a

target application tgt(𝑛) of pr(𝑛) within the body of ctx (𝑛). The root node 𝑟, which

represents the main procedure, is such that ctx (𝑟) = 𝑄 for a query CHC 𝑄 ∈ C and

pr(𝑛) and tgt(𝑛) both do not exist.

Every node in the derivation tree can be associated with the CHC that results

from unfolding predicates according to the path from the root of the tree to the node,

which is an unbounded context for the node. Here “unbounded” is used to distinguish

contexts that have their sizes restricted by a given bound (called bounded contexts

and introduced later) and those that are not (referred to as unbounded). Note that

both bounded and unbounded contexts here are finite because paths through the tree

are finite.

The CHCs for derivation tree nodes correspond to paths in the original program

along which there may be potentially spurious counterexamples. In the example for

the main-labeled node, this would be the query CHC 𝑓(𝑥) ∧ 𝑒(𝑥− 1, 𝑦) ∧ 𝑦 ⇒⊥. For

example, the node labeled g at the end of path main→ f→ g can be associated with

the result of unfolding 𝑓 in 𝑓(𝑥) ∧ 𝑒(𝑥− 1, 𝑦) ∧ 𝑦 ⇒⊥ to get 𝑔(𝑤) ∧ ℎ(𝑤, 𝑥) ∧ 𝑒(𝑥−

1, 𝑦)∧ 𝑦 ⇒⊥. For this CHC to be valid under interpretations in mapping 𝑂, 𝑂 needs

to be such that replacing 𝑔, ℎ, and 𝑒 with their interpretations in 𝑂 makes the body

of the CHC unsatisfiable. Meanwhile, if the under-approximate mapping 𝑈 is such

that replacing 𝑔, ℎ, and 𝑒 with their interpretations in 𝑈 makes the body of the CHC

satisfiable, then there is a counterexample where the satisfying assignments for the

variables determine the counterexample path through the original program.

As mentioned, each node has a target predicate application. This target appli-

cation is the predicate application corresponding to the last call in the call path (in

the case of the example, this would be the application of 𝑔 so that tgt(𝑛) = 𝑔(𝑤)).
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The disjunction of all possible conjunctions that could replace the predicate applica-

tion if it were to be unfolded (in this case, 𝑤 = 2𝑧 + 1) are referred to as the body

of the target, since they constitute an encoding of the body of the target procedure

in the original program. The unbounded environment for the node is the body of

the associated unbounded context CHC before unfolding without the target predicate

application, i.e. the environment for the target in the CHC, where an environment is

defined as follows:

Definition 4.2.2 (Environment). For a given CHC 𝐶 of the form 𝑅1(�⃗�1) ∧ . . . ∧

𝑅𝑛(�⃗�𝑛)∧𝜑(�⃗�)⇒ head , we say that the following formula is the environment (denoted

ctx (𝑅𝑖, 𝐶)) for the uninterpreted predicate application 𝑅𝑖(�⃗�𝑖):

𝑅1(�⃗�1) ∧ . . . ∧𝑅𝑖−1(�⃗�𝑖−1) ∧𝑅𝑖+1(�⃗�𝑖+1) ∧ . . . ∧𝑅𝑛(�⃗�𝑛) ∧ 𝜑(�⃗�)

We naturally extend the mappings 𝑀 from uninterpreted predicates to environments.

That is, for the formula above: 𝑀(ctx (𝑅𝑖, 𝐶)) =
𝑗 ̸=𝑖⋀︀

1≤𝑗≤𝑛

𝑀(𝑅𝑗)(�⃗�𝑗) ∧ 𝜑(�⃗�). Applying

mappings to environments during verification allows us to use previously-learned pro-

cedure summaries, enabling modular verification.

In the case of considering the node labeled g in the example, the unbounded

environment is ℎ(𝑤, 𝑥) ∧ 𝑒(𝑥 − 1, 𝑦) ∧ 𝑦. In general, a target predicate application’s

environment need not be taken from its unbounded context and can be, for example,

a bounded environment as described in the next section.

For any node 𝑛 ∈ 𝑁 , let 𝑒𝑛𝑣(𝑛) refer to the environment for tgt(𝑛) in ctx (𝑛) and

let body(𝑛) denote the body of the target tgt(𝑛).

Each node 𝑛 ∈ 𝑁 represents a verification subtask, where the body of ctx (𝑛)

represents a set of (potentially spurious) counterexamples. The goal of each subtask

is to find a solution for the system of CHCs consisting of all non-query CHCs in C

with the query CHC ctx (𝑛) and refine the over-approximation 𝑂[proc(𝑛)] to reflect

the learned facts, or, if this cannot be done, to expand proc(n)’s under-approximation
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SAFE
O is a solution for C
𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢⊥

UNSAFE
body ⇒⊥∈ C 𝑈(body) ̸⇒⊥

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ ⊤

Figure 4.2: Proof rules for concluding safety or unsafety as the result of the verification problem.

𝑈 [proc(𝑛)] to demonstrate (part of) a real counterexample. Exploration proceeds by

choosing a node from 𝐴 and making SMT queries about the body of the target and

the environment for that node to try to learn formulas to update 𝑂 and 𝑈 with.

More formally, the algorithm generates and discharges a series of proof subgoals

during execution, where a proof subgoal is defined as follows:

Definition 4.2.3 (Proof (sub)Goal). For system of CHCs C , derivation tree 𝐷 =

⟨𝑁,𝐸⟩, a subset 𝐴 ⊆ 𝑁 of available nodes, over- and under-approximate summary

maps 𝑂 and 𝑈 , a set of EC lemmas 𝐿, and Res ∈ {⊤,⊥}, a proof (sub)subgoal is

denoted 𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res .

The algorithm tries to prove either the case that Res = ⊥ or that Res = ⊤.

If it proves Res = ⊥, it has verified 𝑃 . If it proves Res = ⊤, then it has found a

counterexample for 𝑃 ’s safety. This proof proceeds with the application of proof rules,

where the final rule applied is one of the two in Figure 4.2, where the SAFE rule

corresponds to when the program is safe and the UNSAFE proof rule corresponds to

when a counterexample is found. The remainder of the proof rules will be introduced

and explained in the sequel.

4.3 Bounded Environments

Note that if unbounded contexts and environments are used as described, the longer

the path in the call graph that we explore, the larger the SMT queries that we make

will be. To improve scalability, the algorithm instead uses bounded contexts and

environments from call paths to use in SMT queries at each step. These bounded
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environments include bodies of the ancestors of the target procedure, but only up to

level 𝑘 above the target in the call graph. Ancestors at ℓ > 𝑘 above the target are

soundly abstracted away so that these environments capture at least the behaviors of

the program before and after the target procedure that may lead to a counterexample.

Approximations of these environments and of the bodies of target procedures help us

learn new facts about the targets.

Definition 4.3.1 (Bounded context). For a given bound 𝑘, and a path 𝑑 = 𝑛0 →

. . . → 𝑛𝑚−1 → 𝑛𝑚 in a derivation tree, a 𝑘-bounded context for 𝑛𝑚 is a formula

bctx (𝑛𝑚) over free variables in unfold(𝑑, 𝑘), defined as follows:

bctx (𝑛𝑚)
def
= unfold(𝑑, 𝑘).body ∧ interface(𝑑, 𝑘) ∧ summ(d , k)⇒⊥

Here, we also have the following:

• unfold(𝑑, 𝑘) corresponds to unfolding the bodies of the last 𝑘−1 procedure calls

in 𝑑 into the body of proc(𝑛)’s 𝑘th ancestor in 𝑑, and unfold(𝑑, 𝑘).body denotes

the body of this CHC

• interface(𝑑, 𝑘) is a formula over the inputs and outputs of the procedure for

node 𝑛m−k , 𝑘 < 𝑚 (or ⊤, if 𝑘 ≥ 𝑚)

• summ(𝑑, 𝑘) is a formula over the inputs and outputs of the other callees of the

𝑘-bounded ancestors of proc(𝑛𝑚).

Note that unfold(d , k) ignores any restrictions due to ancestors that are more than

𝑘-levels above 𝑝𝑟𝑜𝑐(𝑛𝑚), and contains a subset of the conjuncts of the full context,

which is given by unfold(d , |d |)⇒⊥. Such restrictions are expressed in interface(𝑑, 𝑘),

which represents the interface between the 𝑘-bounded context and the rest of the

unbounded context.

In practice, the algorithm computes interface(𝑑, 𝑘) as QE(∃free.𝑂(env(𝑛𝑚)),

where QE denotes quantifier elimination and free
def
= fvs(env(𝑛𝑚))∪ fvs(unfold(𝑑, 𝑘)),
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where fvs gives the set of free variables of a given formula. Quantifier elimination is

approximated using the standard model-based projection technique [34]. Although it

is always possible to use interface(𝑑, 𝑘) = ⊤, which treats ancestor procedures above

bound 𝑘 as havocs, this choice was found to be ineffective in experiments.

In what follows, I refer to unfold(𝑑, 𝑘).body ∧ interface(𝑑, 𝑘) as 𝐵(𝑑, 𝑘), or simply

as 𝐵 (when 𝑑 and 𝑘 are clear). Note that the algorithm requires that each bctx (𝑛𝑚)

(and thus each 𝐵(𝑑, 𝑘)) can be computed from its parent 𝑛𝑚−1’s bounded context via

a single unfolding. Given the choice of interface(𝑑, 𝑘) mentioned earlier, using such

a method to compute a child node’s bounded context lets us avoid (approximate)

quantifier elimination on large formulas since only one procedure body’s variables

need to be eliminated when starting from the parent’s bounded context.

The summ(𝑑, 𝑘) formula can be either ⊤ or a conjunction that adds approximation

constraints based on EC lemmas and summaries for the other callee procedures. The

algorithm uses 𝐵 as the body for bctx when summ(𝑑, 𝑘) = ⊤, and otherwise uses

𝑀(𝐵)∧ tgt(𝑛) or 𝑀(env(𝑛))∧ tgt(𝑛) as the body for bctx , where 𝑀 ∈ {𝑂,𝑈} (when

summ(𝑑, 𝑘) is the conjunction from approximating with 𝑀).

This example uses 𝑘 = 2. When the algorithm targets the last call to e along path

𝑑 = main→ e→ o→ e, main’s body will be abstracted. Note that by the time this

𝑑 is considered, the over-approximation for f is such that 𝑂[𝑓 ] = 𝜆𝑥.𝑥 mod 2 = 0.

For the corresponding node in the derivation tree, the bounded context is made of

the following components:

• unfold(d , 2 ) = 𝑥 ≥ 0 ∧ 𝑥 ̸= 0 ∧ 𝑥− 1 ≥ 1 ∧ 𝑥− 1 ̸= 1 ∧ 𝑒(𝑥− 2, 𝑦)

• interface(d , 2 ) = 𝑥+ 1 mod 2 = 0 (following from 𝑂[𝑓 ])

• summ(𝑑, 𝑘) = ⊤
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4.4 Summary Updates using SMT Queries

There are four kinds of SMT queries that the algorithm uses to update summaries.

Two over-approximate the body of the target and update the over-approximate

summaries, and two under-approximate the body of the target and update under-

approximate summaries. For each of the four SMT queries, the aim is to try to make

deductions as seen in Table 4.1.

4.4.1 Updating over-approximate summaries

In checks that over-approximate the body of the target, the algorithm aims to learn

an interpolant that proves the absence of a subset of counterexamples along the

paths in the program that correspond to the chosen CHCs. That is, for a given

node in the derivation tree, if we consider its corresponding CHC as described above,

the algorithm tries to find an interpolant that separates the over-approximation of

the target body from either an over-approximation of the environment or under-

approximation of the environment, where over- (resp. under-)approximation refers to

replacing all uninterpreted predicates with their interpretations in 𝑂 (resp. 𝑈).

Since the target body is over-approximated, any interpolant found that separates

it from the environment will be an over-approximate summary for the target proce-

dure, expressing a fact about all behaviors of the procedure, and hopefully leading

to the validity of the CHC corresponding to the given node in the derivation tree

(though the algorithm does not check these CHCs for validity directly because they

are not bounded in size). If validity is not achieved for the CHC for that node, then

stronger over-approximations will be needed for one or more of the procedures whose

predicates appear in the CHC (possibly including the target procedure for the node);

despite not checking the full CHC for each node directly, the algorithm ensures that,

without finding strong enough over-approximations that make the CHC valid, veri-
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fication cannot succeed. Such over-approximate summaries allow us to prove safety

in a modular way. For over-approximated environments, the existence of such an

interpolant demonstrates the safety of the program along the relevant paths in the

current node’s CHC. For under-approximated environments, the existence of such an

interpolant demonstrates the safety of the program only along some of those paths.

For all deductions in Table 4.1 that do not lead to EC lemmas and where the

target body is over-approximated, the deductions are of the form 𝑝(�⃗�) ⇒ I(�⃗�) for

target procedure 𝑝 and a formula I(�⃗�) with no uninterpreted predicates. I(�⃗�) is an

interpolant that separates the over-approximation of the target body from the ap-

proximated environment. Whenever such a deduction is made, the over-approximate

summary 𝑂[𝑝] is updated to yield a new over-approximate summary map 𝑂′ where

𝑂′[𝑝] is as follows:

𝑂′[𝑝] = 𝜆�⃗�.𝑂[𝑝](�⃗�) ∧ I(�⃗�)

The two proof rules (and corresponding SMT checks) that corresponding to cases

in which the over-approximate summaries are updated in this way are shown in Fig-

ure 4.3. The over-over (OO) rule involves over-approximating both the target proce-

dure body and the environment and making an SMT query to find the interpolant I.

Meanwhile, the under-over (UO) rule is the same except the environment is under-

approximated.

4.4.2 Updating under-approximate summaries

In checks that under-approximate the target body, the algorithm tries to find (part

of) a bug. When the body of the target is under-approximated, the algorithm in-

stead instead looks for cases where the conjunction of the under-approximated target

body and approximated environment is satisfiable, where the satisfying assignment

thus describes behaviors the procedure may exhibit. Under-approximate summaries
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OVER-OVER (OO)

𝑛 ∈ 𝐴 𝑝 = proc(𝑛)
𝑂(body(n))⇒ I(�⃗�) I(�⃗�)⇒ ¬𝑂(benv(𝑛))

𝑂′ = 𝑂[𝑝 ↦→ 𝜆�⃗�.𝑂[𝑝](�⃗�) ∧ I(�⃗�)] 𝐷,𝐴,𝑂′, 𝑈, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

UNDER-OVER (UO)

𝑛 ∈ 𝐴 𝑝 = proc(𝑛)
𝑈(body(n))⇒ I(�⃗�) I(�⃗�)⇒ ¬𝑂(benv(𝑛))

𝑂′ = 𝑂[𝑝 ↦→ 𝜆�⃗�.𝑂[𝑝](�⃗�) ∧ I(�⃗�)] 𝐷,𝐴,𝑂′, 𝑈, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

Figure 4.3: The two proof rules that update over-approximate summaries.

allow us to construct counterexamples in the case where the program is unsafe. Note

that for under-approximated unbounded environments, the existence of such a sat-

isfying assignment always demonstrates an actual counterexample in the program.

For bounded environments or over-approximated environments, the sound abstrac-

tion/approximation in the environment allows for more behaviors than are in the

original program, so a satisfying assignment may correspond to a counterexample

that is spurious in the actual program. In both over- and under-approximate cases,

approximating and bounding the environment and approximating the target body

allows us to keep queries small.

For all deductions in Table 4.1 where target body is under-approximated, the

deductions for a target procedure 𝑝 can be seen to be of the form F (�⃗�)⇒ 𝑝(�⃗�) for a

formula 𝐹 without uninterpreted predicates. Whenever such a deduction is made, the

under-approximate summary 𝑈 [𝑝] is updated to a new under-approximate mapping

𝑈 ′ as follows:

𝑈 ′[𝑝]← 𝜆�⃗�.𝑈 [𝑝](�⃗�) ∨ 𝐹 (�⃗�)

Note that each such F found for a node 𝑛 in the derivation tree must be such that

𝐹 (�⃗�)⇒ ∃fvs(body(n)) ∖ �⃗�.𝑈(body(𝑛))
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UNDER-UNDER (UU)

𝑛 ∈ 𝐴 𝑝 = proc(𝑛)
𝑈(body(𝑛)) ∧ 𝑈(benv(𝑛)) ̸⇒⊥
𝐹 (�⃗�)⇒ ∃locals(n).𝑈(body(𝑛))

𝑈 ′ = 𝑈 [𝑝 ↦→ 𝜆�⃗�.𝑈 [𝑝](�⃗�) ∨ 𝐹 (�⃗�)] 𝐷,𝐴,𝑂, 𝑈 ′, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

OVER-UNDER (OU)

𝑛 ∈ 𝐴 𝑝 = proc(𝑛)
𝑈(body(𝑛)) ∧𝑂(benv(𝑛)) ̸⇒⊥
𝐹 (�⃗�)⇒ ∃locals(n).𝑈(body(𝑛))

𝑈 ′ = 𝑈 [𝑝 ↦→ 𝜆�⃗�.𝑈 [𝑝](�⃗�) ∨ 𝐹 (�⃗�)] 𝐷,𝐴,𝑂, 𝑈 ′, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

Figure 4.4: The two proof rules that update under-approximate summaries.

where fvs(body(n)) gives all the free variables in body(𝑛). Such an 𝐹 (�⃗�) can be

found by either using the consequent of the implication as 𝐹 (�⃗�) or by employing

methods for under-approximating of quantifier elimination such as the model-based

projection technique [34]. Using such an 𝐹 to perform the update weakens 𝑈 [𝑝] while

preserving the invariant that ∀�⃗�.𝑈 [𝑝](�⃗�) ⇒ 𝑂[𝑝](�⃗�) (recall this invariant for under-

approximate mappings from Chapter 2); assuming that the invariant already holds,

then 𝑈 ′[𝑝]⇒ 𝑈(body(𝑛))⇒ 𝑂(body(𝑛))⇒ 𝑂[𝑝](�⃗�).

Let locals(𝑛) = fvs(body(𝑛)) ∖ �⃗� where tgt(𝑛) = 𝑝(�⃗�). The two proof rules (and

corresponding SMT checks) that correspond to cases in which the under-approximate

summaries are updated in this way are shown in Figure 4.4. The under-under (UU)

rule involves under-approximating both the target procedure body and the environ-

ment and making an SMT query to find the formula 𝐹 (�⃗�). Meanwhile, the over-under

(OU) rule is the same except the environment is over-approximated.

4.4.3 Example

Let us now consider the SMT queries on a chosen environment-target pair at each

step. Suppose our algorithm has already considered the path to o on row 3 (Table 4.1)
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and now chooses node g ∈ 𝐴 in path main → f → g. Recall that the unbounded

environment here is ℎ(𝑤, 𝑥) ∧ 𝑒(𝑥 − 1, 𝑦) ∧ 𝑦. For the bound 𝑘 = 2, this unbounded

environment is also the bounded environment. Since the bounded environment in-

cludes predicate applications corresponding to calls to h (called by f) and e (called by

main), we use their over-approximate summaries (both currently ⊤) in SMT queries

requiring over-approximation. We similarly under-approximate using summaries for

h and e learned in rows 2 and 1, respectively. Over- and under-approximations of g

are just the body of its CHC with any variables (i.e., “CHC-local variables”) that do

not occur in the head of the CHC rewritten away (i.e., 𝑦 mod 2 ̸= 01), since it has no

callees.

The over-over query that over-approximates both the environment and target

body fails; the conjunction of the approximated environment and target body is sat-

isfiable. Similarly, the under-under query that under-approximates both the environ-

ment and target body fails, since the conjunction of the approximated environment

and target body is unsatisfiable.

A weaker version of the under-under check is the over-under check, in which

the environment is now over-approximated. Because it is weaker, it may result in

learning under-approximate summaries that may not be necessary, since the over-

approximated environment may contain spurious counterexamples. When our algo-

rithm performs this check, it finds a path that goes through the over-approximated

environment and the under-approximation of g’s body and thus augments g’s under-

approximation (row 4).

A corresponding weaker version of the over-over check is the under-over check,

in which the environment is under-approximated. Because the under-approximated

environment may not capture all counterexamples, the learned interpolant by itself

1Expressions such as 𝑦 mod 2 = 0 can be generated by existentially quantifying local variables
and then performing quantifier elimination.
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could be too weak to prove safety. Our algorithm refines g’s over-approximation with

the interpolant learned in this query (row 5).

Note that these two weaker checks are crucial in our algorithm. Consider a differ-

ent main function that contains only assert(f() mod 2 = 0). To prove safety, we

would need to consider paths main→ f→ h and main→ f→ g, but for these paths,

both “stronger” checks fail. Paths through the derivation tree must be paths through

the call graph, so we would not consider the bodies of h and g simultaneously; the

“weaker” checks allow us to learn summary updates.

4.5 Explicit Induction and EC Lemmas

So far, we have not considered nor seen how to use EC lemmas for discharging verifi-

cation subproblems; however, they are necessary for enabling the algorithm to handle

mutual recursion. To demonstrate the need for and use of induction and EC lemmas

for handling mutual recursion, we now consider row 9 in Table 4.1, where we perform

an over-over check for the final call to e in the call path. The current derivation tree

has the same structure as the final derivation tree, shown in Figure 4.1d.

No induction. At this stage, our over-approximation for f precisely describes all

possible behaviors of f (rows 7, 8), but no interpolant can be learned because the

over-approximation ⊤ of o in the body of the target e is too coarse. Without using

induction, we cannot make any assumptions about this call to o, and are stuck with

this coarse over-approximation. Even if we inlined o in e, we would similarly still

have an overly coarse over-approximation for e.

Induction without EC lemmas. We can instead try to use induction on the

body of e. Its over-approximated environment includes counterexample paths that

we would like to prove spurious. To do this, we augment the OO rule from Figure 4.3

as shown in Figure 4.5. This OOI rule has two changes from the OO rule: the first

74



OVER-OVER-IND (OOI)

𝑛 ∈ 𝐴 𝑝 = proc(𝑛) hyp = ∀�⃗�.𝑂[𝑝](�⃗�)⇒ I(�⃗�)
𝑂(body(𝑛)) ∧ hyp ⇒ I(�⃗�) I(�⃗�)⇒ ¬𝑂(benv(𝑛))

𝑂′ = 𝑂[𝑝 ↦→ 𝜆�⃗�.𝑂[𝑝](�⃗�) ∧ I(�⃗�)] 𝐷,𝐴,𝑂′, 𝑈, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

Figure 4.5: Altered OO rule from Figure 4.3 with induction.

is the additional premise hyp = ∀�⃗�.𝑂[𝑝](�⃗�) ⇒ I(�⃗�), which denotes the induction

hypothesis, and the second is modifying the implication 𝑂(body(𝑛)) ⇒ I(�⃗�) so that

the induction hypothesis is now a conjunct in the antecedent. This implication checks

both the base case and the inductive step.

The base case for the induction is that I over-approximates proc(𝑛) for all CHCs

that do not have applications of proc(𝑛) in their body. For the inductive step, we

consider such CHCs where body(𝑛) contains applications of proc(𝑛). The induction

hypothesis, which is captured by formula hyp, is that I over-approximates all recursive

calls to proc(𝑛) inside these bodies.

Let us now consider applying this rule to our example. Let formula hyp denote

the property ∀𝑥, 𝑦.𝑂(𝜑(𝑥, 𝑦)), where 𝜑(𝑥, 𝑦)
def
= 𝑒(𝑥, 𝑦) ⇒ (𝑦 ⇔ 𝑥 mod 2 = 0). The

consequent in the implication is generated by examining the current environment for

the target application of 𝑒, i.e., the environment implies the negation of the conse-

quent. Problems arise when trying to prove this property by induction because there

is no opportunity to apply the induction hypothesis about 𝑒.

More specifically, 𝑂(body(𝑛)) contains a disjunct corresponding to the case in

the else branch of the original program in which e calls o. This disjunct is 𝑥 ≥

0 ∧ 𝑥 ̸= 0 ∧ 𝑜(𝑥 − 1, 𝑦). Facts about 𝑜 are thus needed in 𝑂 to finish the proof for

𝑂(body(𝑛))∧ hyp ⇒ I(�⃗�) because 𝑂(body(𝑛)) involves using summary 𝑂[𝑜], and with

a coarse summary like 𝑂[𝑜] = 𝜆�⃗�.⊤, the implication cannot be proven.

If we were to inline o in e and assume the induction hypothesis that 𝜑(𝑥, 𝑦)

holds for the inner call to e, an inductive proof would succeed without using EC
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lemmas. However, such an inlining approach can lead to poor scalability and precludes

inference of summaries (e.g., for o) that could be useful in other call paths.

EC lemmas. The algorithm discovers additional lemmas in the form of implications

over certain procedure summaries. In order to use these lemmas, the algorithm em-

ploys an altered version OOIL of the OOIL rule from Figure 4.5, as well as a version

UOIL where the environment is under-approximated, as shown in Figure 4.6.

These rules make assumptions for current node 𝑛 and perform induction using

these assumptions and known EC lemmas in 𝐿. In particular, assumps(𝑛,𝐷) is a set

of assumptions {𝑎𝑖 | 1 ≤ 𝑖 ≤ 𝑗} for some 𝑗 ≥ 0. When 𝑗 = 0, the set of assumptions

is empty, and OOIL has the same effect as applying OOI, except that the learned

information is stored as an EC lemma rather than as part of 𝑂 (applications of the

EL and RL rules after OOIL can achieve the same effect as the OOI rule). Each

assumption 𝑎𝑖 is of the following form:

𝑞𝑖(�⃗�𝑖)⇒ ∀fvs(𝑏𝑖) ∖ �⃗�𝑖.¬bi ,

where 𝑞𝑖 is the predicate for an ancestor of 𝑛 and 𝑞𝑖 is called by target 𝑝 in some

CHC. The ancestor node’s bounded environment is 𝑏𝑖. Intuitively, each assumption

is that the ancestor’s bounded verification subtask has been discharged.

The Inst function takes a set of assumptions 𝑆, adds a conjunct 𝑎𝑖[�⃗�𝑖 ↦→ �⃗�] for

each predicate application 𝑞𝑖(�⃗�) in body(𝑛) to each each element 𝑎𝑖 ∈ 𝑆, conjoins the

resulting formulas, and replaces each application of an uninterpreted predicate with

its interpretation in 𝑂.

Compared to the OOI rule, the OOIL has three differences: the first is the making

of assumptions as can be seen in the addition of premise 𝑆 = assumps(𝑛,𝐷), the

second is that the subgoal has an update to 𝐿 rather than 𝑂, and the third is the

use of these premises and EC lemmas as can be seen by the addition of conjuncts⋀︀
𝑂(𝐿) and Inst(𝑆) to the antecedent of implication 𝑂(body(𝑛)) ∧ hyp ⇒ I(�⃗�). As
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in the OOI case, this implication checks both the base case and inductive step, but

now under the assumptions made in 𝑆.

When EC lemmas are learned with 𝑗 = 0 (i.e., 𝑆 is empty), then these degenerate

EC lemmas are essentially the same as over-approximate summaries. The EL rule

in 4.6 allows such lemmas to be converted into over-approximate summaries in 𝑂,

allowing the combination of OOIL (resp. UOIL) and EL to replace the usage of OO

(resp. UO). As over-approximate summaries are updated, EC lemmas can also be

weakened, since they may have assumptions that become accounted for in the updated

over-approximate summaries. The RL rule allows EC lemmas to be weakened when

this is the case, and can eventually lead to the EL rule being able to be applied for a

sufficiently weakened EC lemma.

Let us now consider applying the OOIL rule to our example. Let hyp be

∀𝑥, 𝑦.𝜑(𝑥, 𝑦) as before. Note that I(𝑚,𝑛) is thus 𝑛 ⇔ 𝑚 mod 2 = 0. Let

𝜃(𝑚,𝑛)
def
= 𝑜(𝑚,𝑛)⇒ (𝑛⇔ (1 + 𝑚) mod 2 = 0). (As with 𝜑(𝑥, 𝑦), the consequent in

this implication is generated by examining the environment for the target application

of 𝑜.) The set of assumptions 𝑆 contains only ∀𝑚,𝑛.𝜃(𝑚,𝑛), since 𝑗 = 1 is used for

computing 𝑆 in this case2.

We now can use the assumption about the evenness of the result of 𝑒 (as captured

by 𝜑(𝑥, 𝑦)) to help prove by induction that 𝑜’s output is always odd (as captured by

hyp). This part of the proof is captured by the following premise:

𝑂(body(𝑛)) ∧
⋀︁

𝑂(𝐿) ∧ Inst(𝑆) ∧ hyp ⇒ I(𝑥− 2, 𝑦)

Note here that
⋀︀
𝑂(𝐿) = ⊤ because 𝐿 = ∅ and that Inst(𝑆)

def
= 𝜃(𝑥 − 3, 𝑦) as a

conjunct. Here, 𝑂(body(𝑛)) = (𝑥− 2 ≥ 0∧ 𝑥− 2 = 0∧ 𝑦 = ⊤)∨ (𝑥− 2 ≥ 0∧ 𝑥− 2 ̸=

0 ∧𝑂[𝑜](𝑥− 3, 𝑦)).

2Note that this choice of 𝑗 = 1 is arbitrary, but it is preferable to use the smallest 𝑗 possible to
learn stronger EC lemmas
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OVER-OVER-IND-LEMMAS (OOIL)

𝑛 ∈ 𝐴 𝑝 = proc(𝑛) hyp = ∀�⃗�.𝑂[𝑝](�⃗�)⇒ I(�⃗�) S = assumps(n,D)

𝑂(body(𝑛)) ∧
⋀︁

𝑂(𝐿) ∧ Inst(𝑆) ∧ hyp ⇒ I(�⃗�) I(�⃗�)⇒ ¬𝑂(benv(𝑛))

𝐿′ = 𝐿 ∪ {∀fvs(S ), �⃗�.
⋀︁

𝑆 ⇒ (𝑝(�⃗�)⇒ I(�⃗�))} 𝐷,𝐴,𝑂, 𝑈, 𝐿′, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

UNDER-OVER-IND-LEMMAS (UOIL)

𝑛 ∈ 𝐴 𝑝 = proc(𝑛) hyp = ∀�⃗�.𝑂[𝑝](�⃗�)⇒ I(�⃗�) S = assumps(n,D)

𝑂(body(𝑛)) ∧
⋀︁

𝑂(𝐿) ∧ Inst(𝑆) ∧ hyp ⇒ I(�⃗�) I(�⃗�)⇒ ¬𝑈(benv(𝑛))

𝐿′ = 𝐿 ∪ {∀fvs(S ), �⃗�.
⋀︁

𝑆 ⇒ (𝑝(�⃗�)⇒ I(�⃗�))} 𝐷,𝐴,𝑂, 𝑈, 𝐿′, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

REDUCE-LEMMAS (RL)

ec = ∀vars(S ), �⃗�.
⋀︁

𝑆 ⇒ (𝑝(�⃗�)⇒ prop) ∈ 𝐿
𝑎 ∈ S (𝑝′(�⃗�)⇒ 𝑂[𝑝′](�⃗�))⇒ 𝑎 S ′ = S ∖ {𝑎}

𝐿′ = (𝐿 ∖ {ec}) ∪
{︀
∀vars(S ′), in, out .

⋀︁
𝑆 ′ ⇒

(︀
𝑝(in, out)⇒ 𝜓

)︀}︀
𝐷,𝐴,𝑂, 𝑈, 𝐿′, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

ELIM-LEMMAS (EL)

ec = ∀�⃗�.⊤ ⇒ (𝑝(�⃗�)⇒ prop) ∈ 𝐿
𝑂′ = 𝑂[𝑝 ↦→ 𝜆�⃗�.𝑂[𝑝](�⃗�) ∧ prop]
𝐷,𝐴,𝑂′, 𝑈, 𝐿 ∖ {ec}, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

Figure 4.6: Proof rules for induction with EC lemmas.

The first disjunct in 𝑂(body(𝑛)) represents the base case. Let us consider the case

where the first disjunct is true. To prove the premise, it is sufficient to show that the

following holds:

𝑥− 2 ≥ 0 ∧ 𝑥− 2 = 0 ∧ 𝑦 = ⊤ ⇒ (𝑦 ⇔ 𝑥− 2 mod 2 = 0)

From the conjuncts 𝑥− 2 = 0 and 𝑦 = ⊤, it clearly holds.

Let us now consider the case where the second disjunct is true, which corresponds

to the inductive step. To prove the premise, it is sufficient to show that the following
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holds:

𝑥− 2 ≥ 0 ∧ 𝑥− 2 ̸= 0 ∧𝑂[𝑜](𝑥− 3, 𝑦) ∧ 𝜃(𝑥− 3, 𝑦)⇒ (𝑦 ⇔ 𝑥− 2 mod 2 = 0)

From the conjunct 𝜃(𝑥 − 3, 𝑦), which equals 𝑦 ⇔ 𝑥 − 2 mod 2 = 0, this implication

also clearly holds.

The other premises of the OOIL rule are easy to prove in this case, and, as a result,

the formula I is learned as part of an EC lemma and added to the set of EC lemmas

𝐿 to yield the new set 𝐿′. See row 9 of Table 4.1 for the corresponding deduction,

which states, essentially, that given that the result of o is true iff its input is odd,

the result of e is true iff its input is even.

Now, let us reconsider the call to o along call path main→ e→ o. The discovered

EC lemma allows us to prove formula 𝜃 valid by induction and learn it as part of an

over-approximate summary by using the OOIL and then EL rules. This new over-

approximate fact for 𝑜 is combined with the EC lemma in the RL rule allowing the

algorithm to use the EL rule to learn the deduction 𝑒(𝑥, 𝑦) ⇒ (𝑦 ⇔ 𝑥 mod 2 = 0),

which it uses as part of an update of 𝑂 (from row 10 in Figure 4.1).

At this point, the over-approximate summaries in 𝑂 are sufficient to prove safety;

the SAFE rule from Figure 4.2 can be applied.

4.6 Modular Verification Algorithm

This section describes more precisely how the modular verification algorithm employs

the proof rules described above. I first outline the top-level procedure (Sect. 4.6.1)

based on iteratively processing nodes in the derivation tree. I then describe the order

in which SMT queries are performed (Sect. 4.6.2), and the heuristics I have found

useful in practice (Sect. 4.7). I then present the correctness and the progress property

of the algorithm and discuss limitations (Sect. 4.6.4).
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Algorithm 4 Procedure for solving multiple queries

1: procedure Solve(CHCs C)
2: for 𝑅 ∈ R do 𝑂[𝑅]← 𝜆𝑥1, . . . , 𝑥𝑛.⊤
3: for 𝑅 ∈ R do 𝑈 [𝑅]← 𝜆𝑥1, . . . , 𝑥𝑛. ⊥
4: Queries ← GetQueries(C)
5: C ← C ∖Queries
6: for 𝑄 ∈ Queries do
7: C ← C ∪ {𝑄}
8: (result ,Goal)← Verify(C , 𝑂, 𝑈,𝑄)
9: if result ̸= safe then
10: return result
11: 𝑂 ← 𝑂 in Goal
12: 𝑈 ← 𝑈 in Goal

4.6.1 Algorithm Outline

The algorithm constructs a derivation tree based on the call graph of the program,

which is used to guide the selection of CHCs to explore. It achieves scalability by con-

sidering only bounded environments in all the SMT queries, as described previously.

Recall that these SMT queries are implicitly made during the application of proof

rules. The use of induction and EC lemmas enables handling of mutually recursive

programs. The state during verification is captured by proof (sub)goals as defined

earlier.

Main loop. For systems of CHCs C with queries 𝑄0, . . . , 𝑄𝑛, the full system

of CHCs can be solved by invoking the Solve procedure shown in Algorithm 4.

This Solve procedure assumes that any updates made to mappings 𝑂 and 𝑈 in the

Verify procedure also affect the 𝑂 and 𝑈 mappings within Solve.

The Verify procedure shown in Algorithm 5 accepts a system of CHCs C , over-

and under-approximate summary mappings 𝑂 and 𝑈 , and a query CHC 𝑄. Note

that 𝑄 should be the only query CHC in C . It first constructs an initial proof

goal containing an initial derivation tree, initial summary maps, and empty sets of

lemmas. Initially all nodes in the derivation tree are available, i.e., they are in 𝐴. It
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Algorithm 5 Modular verification procedure for a single query

1: procedure Verify(CHCs C with uninterpreted predicates R , 𝑂, 𝑈 , 𝑄 ∈ C)
2: 𝑁 ← {𝑟} with ctx (𝑟) = 𝑄
3: 𝐷 ← ⟨𝑁,∅⟩
4: for predicate application 𝑅(�⃗�) in 𝑄 do
5: 𝐷.𝐸 ← 𝐷.𝐸 ∪ {𝑟 → 𝑛} where tgt(𝑛) = 𝑅(�⃗�) and ctx (𝑛) = 𝑄

6: Goal ← 𝐷,𝑁 ∖ {𝑟}, 𝑂, 𝑈,∅, C ⊢ Res
7: while Goal .A ̸= ∅ or summaries are insufficient do
8: Goal ← ProcessNode(𝑛,Goal) for 𝑛 ∈ Goal .A

9: return (Result(Goal), Goal)

then iteratively chooses an available node and tries to update its summaries (using

routine ProcessNode), thereby updating the current goal. The loop terminates

when no more nodes are available or when the current summaries are sufficient to

prove/disprove safety. Result returns safe if the summaries are sufficient for proving

safety, unsafe if they are sufficient for disproving safety, or unknown otherwise.

Throughout the algorithm, proof rules are applied, as will be demonstrated in

subsequent sections; the current Goal is updated whenever a proof rule is applied.

Note that the algorithm is building a proof tree from the bottom-up, so an application

of a rule here involves matching the conclusion to the current Goal .

Choice of procedures and environments. ProcessNode can be viewed as

making queries on an environment-procedure pair. If the algorithm chooses node 𝑛,

then the pair consists of benv(𝑛) and the procedure corresponding to proc(𝑛). Note

that the call graph guides the choice of the target since all paths in 𝐷 correspond to

call graph paths, and the bounded environment, which is computed by unfolding the

𝑘-bounded ancestors of the target. Importantly, the chosen node must be in 𝐴; this

choice can be heuristic as long as no node in 𝐴 is starved. Handling nodes in 𝐴 in a

first-in-first-out manner is sufficient.
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Algorithm 6 Procedure to learn from a node.

1: procedure ProcessNode(𝑛, Goal)
2: if OU(𝑛, Goal) then UU(𝑛, Goal)

3: if no UU call above returned true then
4: if ¬OOIL(𝑛, Goal) then UOIL(𝑛, Goal)

5: if no UU nor OOIL call above returned true then AddNodes(𝑛,Goal)

6: updated ← any summaries were updated above
7: Processed(𝑛, updated ,Goal)
8: return Goal

Summary Inference. The algorithm learns new summaries for target predicates

by applying the four proof rules outlined earlier (OOIL, UU, OU, UOIL). Note that

by choosing the set of assumptions and inductive hypotheses properly, the OOIL and

UOIL rules can achieve the same effect as applying the non-inductive OO and UO

rules.

4.6.2 Ordering and Conditions for SMT Queries

The way in which proof rules are applied to process a node is shown in Algorithm 6.

In the pseudocode, OOIL, UOIL, OU, and UU refer to attempts to apply the corre-

sponding rules, where the OOIL, UOIL calls always follow the application of either

the OOIL and UOIL rule by as many applications of the RL and EL rules as possible.

They return true upon successful application (and update Goal), or false otherwise.

If the algorithm has neither found any counterexamples through the bounded

environment (i.e., all UU attempts failed), nor eliminated the bounded verification

subtask (i.e., the OOIL attempt failed), then it tries to derive new facts by adding new

available nodes for the callees of proc(𝑛). Procedure AddNodes adds these nodes

while avoiding adding redundant nodes to 𝐷. If any summary updates were made for

proc(𝑛), then the procedure Processed (line 7) will add the bounded parents of 𝑛

to 𝐴, so that new information can be propagated to the parents’ summaries. It then

removes 𝑛 from 𝐴.
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ADD-NODE (AN)

𝑛 ∈ 𝐴 tgt(𝑛′) = 𝑝(�⃗�) bctx (𝑛′) = benv(𝑛) ∧ body(𝑛)
tgt(𝑛′) in body(𝑛) 𝐷′.𝐸 = 𝐷.𝐸 ∪ {𝑛→ 𝑛′} 𝐷′, 𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

MAKE-AVAILABLE (MA)

𝑛 ∈ 𝐷.𝑁
tgt(𝑛) = 𝑝(�⃗�) ∀𝑛′ ∈ 𝐴.tgt(𝑛′) = 𝑝(𝑥′)⇒ ∀�⃗�.benv(𝑛′) ̸= ∀𝑥′.benv(𝑛)

𝐴′ = 𝐴 ∪ {𝑛′} 𝐷′, 𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

MAKE-UNAVAILABLE (MU)

𝑛 ∈ 𝐴 𝐷,𝐴 ∖ {𝑛}, 𝑂, 𝑈, 𝐿, C ⊢ Res

𝐷,𝐴,𝑂, 𝑈, 𝐿, C ⊢ Res

Figure 4.7: Proof rules for adding and removing nodes from 𝐴.

Algorithm 7 Procedure for adding nodes in derivation tree

procedure AddNodes(𝑛, Goal)
for body ⇒ proc(𝑛)(�⃗�) ∈ C do

for predicate application 𝑝(�⃗�) in body do
𝑛′ ← AddNode(𝑛, 𝑝(�⃗�), Goal)
MakeAvailableIfNew(𝑛′, Goal)

4.6.3 Addition and Removal of Nodes in Derivation Tree

Additional proof rules specify the removal and addition of nodes in 𝐷 and 𝐴. These

can be found in 4.7 and consist of the Add-Node (AN) rule to add new nodes to

the derivation tree 𝐷, the Make-Available (MA) rule to add an existing and non-

redundant node to the available set 𝐴, and the Make-Unavailable (MU) rule to

remove a node from 𝐴. These proof rules are used by the AddNodes procedure

shown in Algorithm 7 as well as the Processed procedure.

Adding nodes. For every CHC in C whose head is an application of proc(𝑛),

the AddNodes calls procedure AddNode(𝑛, 𝑝(�⃗�),Goal), which applies AN to Goal

with premises matching its arguments, adding a new node 𝑛′ to the derivation tree

in the subgoal. After AddNode applies AN, then it updates Goal to be the subgoal
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of the application. After, the AddNodes procedure calls MakeAvailableIfNew

to make the just-added node 𝑛′ available in 𝐴 if it would not be redundant to do so.

MakeAvailableIfNew, tries to apply MA if either of the following hold:

• 𝑛′ has never been processed before

• 𝑛′ has previously been processed with summaries 𝑂prev and 𝑈prev and bounded

environment benv(𝑛′) has a different over- or under-approximation than before,

i.e., 𝑀prev(body(𝑛′)) ̸= 𝑀(body(𝑛′)) or else 𝑀prev(benv(𝑛′)) ̸= 𝑀(benv(𝑛′)) for

𝑀 ∈ {𝑂,𝑈}

Similarly to AddNode, the procedure MakeAvailableIfNew(𝑛′, 𝑝(�⃗�),Goal)

applies MA with premises that match its arguments. As with AddNode,

MakeAvailableIfNew has the side-effect of updating Goal to be the subgoal

of the applied rule if the rule is successfully applied.

If MakeAddNode fails, then there is already a node 𝑛′′ in 𝐴 with the same

target predicate and bounded environment that the node 𝑛′ would have. I.e., there

is another node 𝑛′′ ∈ 𝐴 with a target predicate application tgt(𝑛′′) and bounded

environment benv(𝑛′′) that are equivalent modulo renaming to tgt(𝑛′) and benv(𝑛′).

Adding a new node to 𝐴 for this target predicate and bounded environment would

be redundant, since the SMT queries would be the same (modulo renaming) as for

the node 𝑛′, so 𝑛 is not added. For a node 𝑛 ∈ 𝐷.𝑁 , a node 𝑛′ ∈ 𝐷.𝑁 such that

its predicate and bounded environment are the same as 𝑛’s in this way is called an

equivalent node. Note that all nodes 𝑛 are equivalent nodes to themselves.

Removing nodes. The Processed procedure called by ProcessNode is shown

in Algorithm 8. It is such that if its argument updated is true, it applies the MU rule

on its argument 𝑛 and updates Goal to the subgoal in this application. It also makes

certain nodes available. These nodes are those that have a verification subproblem

represented by 𝑛 or an equivalent node, meaning that they are a subset of those that,
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Algorithm 8 Procedure for updating available nodes in derivation tree.

procedure Processed(𝑛, updated , Goal)
if updated then

MakeUnavailable(𝑛, Goal)
for equivalent nodes 𝑛′ to 𝑛 in 𝐷.𝑁 do

𝑛′′ is the parent of 𝑛′ in 𝐷.𝐸
MakeAvailableIfNew(𝑛′′, Goal)

upon being processed again with the current 𝑂 and 𝑈 maps, would have different

queries made about them because of the update to 𝑀 [proc](𝑛) for some 𝑀 ∈ {𝑂,𝑈}.

In the case that, updated is false, Processed does nothing.

4.6.4 Correctness and Progress

The correctness and progress claims for Algorithm 5 are stated below.

Theorem 4.6.1 (Correctness). Algorithm 5 returns safe (resp. unsafe) only if the

program with entry point main never violates the assertion (resp. a path in main

violates the assertion).

Proof. The CHC encoding is such that there is a solution to the system of CHCs C iff

the program does not violate the assertion. As a result, if the over-approximate sum-

maries 𝑂 constitute a solution and proof rule SAFE can be applied, the program does

not violate the assertion. The under-approximate summaries 𝑈 in every proof subgoal

are guaranteed to be such that for any 𝑝 ∈ C , 𝑈 [𝑝] implies any over-approximation

𝑂[𝑝]. If UNSAFE can be applied, then the under-approximate summaries 𝑈 imply

that there is no possible solution 𝑂. The summaries in 𝑈 can be used to reconstruct

a counterexample path through the original program in this case.

Theorem 4.6.2 (Progress). Processing a node in the derivation tree leads to at least

one new (non-redundant) query.

Proof. Initially, no nodes in 𝐴 have been processed, and after a node is processed,

it is removed from the derivation tree. The only way that a node can be processed
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and not have a new query made about it is if an already-processed node is re-added

to 𝐴 and this node does not have a new query that can be made about it. The

MakeAvailableIfNew procedure is the only one that adds nodes to 𝐴 and, by

definition, will only add a node to 𝐴 if there is a new query that can be made about

it.

Limitations. If the underlying solver is unable to find appropriate interpolants,

the algorithm may generate new queries indefinitely. (The underlying problem is

undecidable, so this is not unusual for modular verifiers.) Note, however, that because

environments are bounded, each query’s size is restricted.

4.7 Heuristics

In this section, I will discuss certain heuristics that can be and are used in the imple-

mentation of the algorithm.

4.7.1 Prioritizing choice of node

The Verify procedure from Figure 5 employs a heuristic to choose which node in

the set 𝐴 to call ProcessNode on next. The factors that contribute toward a node’s

priority are as follows, with ties in one factor being broken by the next factor, where

depth(𝑛) denotes the depth of node 𝑛 in 𝐷 and previous(𝑛) denotes the number of

times that the node 𝑛 has been chosen previously:

• A lower 𝛼 * depth(𝑛) + 𝛽 * previous(𝑛) score gives higher priority, where 𝛼 and

𝛽 are weights

• A lower call graph depth of proc(𝑛) gives higher priority

• A predicate application tgt(𝑛) that syntactically occurs later in the CHC gives

higher priority
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The implementation prioritizes nodes 𝑛 with lower depth(𝑛) values because they are

more likely to help propagate learned summaries up to the main procedure’s callees.

This priority is moderated by the previous(𝑛) score which should prevent the star-

vation of nodes with larger depth(𝑛) values. The current heuristic search is more

BFS-like, but for some examples, a DFS-like search is better.

4.7.2 Avoiding Redundant Queries

If the algorithm has previously considered a node 𝑛 that it is now processing, it can

avoid making the same queries that we have previously made; while it is guaranteed

that at least one of the four SMT queries will be new, not all of them necessarily will

be. For example, if none of the over-approximate summaries for any of the predicates

in benv(𝑛) nor any of over-approximate summaries for any of the procedures called

by proc(𝑛) have been updated since the last time 𝑛 was processed, the algorithm does

not need to redo the over-over check. The implementation keeps track of whether or

not there have been relevant changes in 𝑂 and 𝑈 since the last time queries for a

node 𝑛 were performed in order to make sure redundant queries are not issued.

4.7.3 Learning Over-approximate Bodies

Although there are many existing methods to interpolate, in many cases they may

not be useful (e.g., if an interpolant is just ⊤, it will not yield any semantic refinement

to an over-approximate summary). To improve the chances of learning a refinement

for an over-approximate summary, whenever the algorithm applies one of the proof

rules that involves over-approximating the procedure body (e.g., OOIL, UOIL), it

ensures at least that it learns the result of over-approximating the procedure body

as an over-approximate fact. For example, consider doing this for the rule OOIL.

The algorithm would simply replace premise 𝐷,𝑂,𝑈, 𝐿′, 𝑃 ⊢ Res with 𝐷,𝑂[𝑝 ↦→

𝜆�⃗�.𝑂[𝑝](�⃗�) ∧ ∃locals(𝑛).𝑂(body(𝑛))], 𝑈, 𝐿′, 𝑃 ⊢ Res . Note that the result of applying
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over-approximate quantifier elimination to 𝑂[𝑝](�⃗�)∧∃locals .𝑂(body(𝑛)) can still yield

a reasonably good update.

4.7.4 Preventing summaries from growing too large

Although it is desirable to increase chances of learning useful refinements of over-

approximations as just discussed, it is still also desirable to prevent summaries from

becoming too complicated. This can be achieved in a few ways.

Quantifier Elimination One way is to use quantifier elimination or an approx-

imation thereof on each conjunct (resp. disjunct) that is added to an over- (resp.

under-) approximate summary. For example, replacing 𝑈 ′ = 𝑈 [𝑝 ↦→ 𝜆�⃗�.𝑈 [𝑝](�⃗�) ∨

∃locals .𝑈(body(𝑛))] with 𝑈 ′ = 𝑈 [𝑝 ↦→ 𝜆�⃗�.𝑈 [𝑝](�⃗�) ∨ QE(∃locals .𝑈(body(𝑛))]) in the

UU rule. This use of QE leads to quantifier-free summaries.

When updating over- (resp. under-) approximate summaries, the algorithm can

use over- (resp. under-) approximate QE techniques. By comparison, under- (resp.

over-) approximate QE would lead to unsoundness. Approximating QE is not only

cheaper but can also further simplify the resulting summary.

Selective Updates A final way of preventing summaries from growing too quickly

syntactically is by only performing semantic updates. For example, consider 𝑂 from

the goal of a rule that has an update 𝑂′ in its subgoal. If ∀�⃗�.𝑂[𝑝](�⃗�) ⇒ 𝑂′[𝑝](�⃗�),

then although 𝑂′[𝑝] contains more conjuncts than 𝑂[𝑝], it does not provide any new

information. In this case, the algorithm avoids the update and simply uses 𝑂 in the

subgoal instead of 𝑂′. Similarly, consider 𝑈 from the goal of a rule and 𝑈 ′ from its

subgoal. The algorithm should only update the under-approximation if ∃�⃗�.𝑈 ′[𝑝](�⃗�) ̸⇒

𝑈 [𝑝](�⃗�). Over-approximate summaries become monotonically more constrained, so if

∀�⃗�.𝑂[𝑝](�⃗�) ⇒ 𝑂′[𝑝](�⃗�) then ∀�⃗�.𝑂[𝑝](�⃗�) ⇔ 𝑂′[𝑝](�⃗�). Under-approximations similarly

become monotonically less constrained.
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4.8 Evaluation and Results

I implemented the algorithm in a tool called Clover on top of a CHC solver called

FreqHorn [72] and the SMT solver Z3 [61]. I evaluated Clover and compared

it with existing CHC-based tools on three sets of benchmarks (described later) that

comprise standard collections and some new examples that include mutual recursion.

I aimed to answer the following questions in the evaluation:

• Is Clover able to solve standard benchmarks?

• Is Clover more effective than other tools at handling mutual recursion?

• To what extent do EC lemmas help Clover solve benchmarks?

• How does the bound 𝑘 for environments affect Clover’s performance?

We compared Clover against tools entered in the annual CHC-solver compe-

tition (CHC-Comp) in 2019: Spacer [103], based on PDR [36]; Eldarica [95],

based on CEGAR [47]; HoIce [39], based on ICE [78]; PCSat [134]; and Ultimate

Unihorn [63], based on trace abstraction [90].

All experiments used a timeout of 10 minutes (as used in CHC-Comp). Clover

was run on a MacBook Pro, with a 2.7GHz Intel Core i5 processor and 8GB RAM,

but the other tools were run using StarExec [145]. Clover was not run on StarExec

due to difficulties with setting up the tool with StarExec. Note that the platform

that Clover was run on is less performant than the one on which other tools were

run.

4.8.1 Description of Benchmarks

Three sets of varied benchmarks were gathered to evaluate Clover. The first set’s

benchmarks range from roughly 10-7200 lines of SMT-LIB [22], and the latter two
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sets have smaller but nontrivial code (around 100 lines). The latter two sets were

manually encoded into CHCs. Additional details follow.

CHC-Comp. I selected 101 benchmarks from CHC-Comp [40] that were con-

tributed by HoIce and PCSat, since their encodings preserve procedure calls and

feature nonlinear CHCs (which can represent procedures with multiple callees per

control-flow path)3.

Real-World. Two families of benchmarks are based on real-world code whose cor-

rectness has security implications. The Montgomery benchmarks involve properties

about the encodings (i.e., Montgomery representations) of numbers used in perform-

ing Montgomery multiplication [101]. Each benchmark has an assertion about the

sum of Montgomery representations [101] of concrete numbers. The parameters of

the Montgomery encoding (i.e., the modulus and auxiliary modulus) are also concrete

but vary across benchmarks, avoiding the need for nonlinear arithmetic invariants.

The s2n benchmarks are based on Amazon Web Services’ s2n library [11]. The spec-

ifications comprise correct API usage to prevent leaks of private data and involve

arrays of unbounded length (not handled by the tool PCSat).

Mutual Recursion. This set of benchmarks containing mutual recursion was

created because few CHC-Comp benchmarks exhibit mutual recursion, likely due to

lack of tool support. Even-Odd benchmarks involve various properties of e and o

(defined as in Sect. 4.1), which is based on examples demonstrating mutual recur-

sion in functional programming languages such as OCaml [119]. For twelve of these

benchmarks, the encoding is the same as before, but the properties vary. Twelve

additional benchmarks extend even and odd to handle negative inputs (which lead

to more control-flow paths through the procedures).

3There is no comparison against FreqHorn since it cannot handle nonlinear CHCs.
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Table 4.2: Number of Benchmarks Solved by Clover and Competing Tools.

Clover
Spacer

Elda-
rica

HoIce PCSat
Ulti-
mate
Auto-
mizer

k=2 k=9 k=10 k=10, no
EC lem-
mas

CHC-Comp (101) 80 77 77 72 93 94 92 81 76
Montgomery (12) 0 11 12 12 5 12 12 3 11
s2n (4) 3 4 4 4 3 0 2 N/A 4
Even-Odd (24) 24 24 24 0 12 0 9 0 0
Hofstadter (5) 4 5 4 5 1 4 5 5 0
Mod 𝑛 (15) 0 15 15 0 0 0 0 0 0
Combination (2) 0 2 2 0 0 0 0 0 0
Total Solved (163) 145 171 171 127 133 110 120 89 91

Another benchmark family is based on the Hofstadter Figure-Figure sequence

[94]. Mod 𝑛 benchmarks consider mutually-recursive encodings of 𝜆𝑥.𝑥 mod 𝑛 = 0 for

𝑛 = 3, 4, 5, where there are five benchmarks for each value of 𝑛. These benchmarks are

of particular interest because unlike existing benchmarks, they exhibit greater depths

of mutual recursion, as might be found in mutual recursive programs in practice.

Experiments were not conducted on such practical programs as recursive descent

parsers, since existing front-ends [85, 58] cannot handle them either because they lack

of support for recursion [85] or do not support arrays or strings [58]. Because these

Mod 𝑛 benchmarks are parametric, they also serve as a good family of benchmarks

for comparison.

Combination benchmarks result from combining Montgomery and Even-Odd

benchmarks, where Montgomery representations are used as inputs to even and odd.

All the mutual recursion benchmarks (except for one of the Hofstadter examples)

involve two queries, where the summaries inferred from the first query should (and

in Clover’s case, do) help with solving the second query.

4.8.2 Results and Discussion

Table 4.2 gives a summary of results. It reports the number of benchmarks solved

for each benchmark set by Clover with bound parameter 𝑘 being 2, 9, and 10 (the

best-performing bounds for the three benchmark sets) and by the other tools. It
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Figure 4.8: Timing results for the Real World (left) and Mutual Recursion (right) benchmarks.
Points below the diagonal line are those for which Clover outperforms the corresponding tool.
Points on the right edge indicate timeouts of the other tool.

also reports results for Clover with 𝑘 = 10 but without EC lemmas. Figure 4.8

shows the timing results for other tools against Clover for Real-World and Mutual

Recursion benchmarks.

4.8.2.1 Efficacy on standard benchmarks.

As can be seen in Table 4.2, Clover performs comparably with some other tools

on the CHC-Comp benchmarks. It is expected that the performance of Clover can

be further improved by additional optimizations and heuristics, such as those that

improve the quality of interpolants.

4.8.2.2 Efficacy on Mutual Recursion benchmarks.

Table 4.2 and Figure 4.8 demonstrate that Clover is more effective and often more

efficient at solving Mutual Recursion benchmarks than the other tools. Few tools

are able to handle the Even-Odd benchmarks, which Clover (with EC lemmas) can

solve at any bound value greater than 2. Other tools are unable to solve even half of

the Mutual Recursion benchmarks, reinforcing that Clover is a useful addition to

existing tools that enables handling of mutual recursion as a first class concern.
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Figure 4.9: Left: Percentage of benchmarks Clover solves with different bounds on different
benchmark categories; Center, Right: Timing results on a representative benchmark from CHC-
Comp and Mutual Recursion, respectively.

4.8.2.3 Usefulness of EC lemmas.

Running Clover with and without EC lemmas using bound 𝑘 = 10 revealed their

usefulness for many of the benchmarks. In particular, the columns for bound 10

with and without EC lemmas in Table 4.2 show that EC lemmas are needed to

allow Clover to solve several CHC-Comp benchmarks and all the Mutual Recursion

benchmarks except the Hofstadter ones. These results indicate that Clover’s ability

to outperform other tools on these benchmarks relies on EC lemmas.

4.8.2.4 Comparison of Different Bounds.

Figure 4.9 (left) shows the number of benchmarks successfully solved by Clover in

each set as the bound value is varied. Running Clover with too small a bound

impedes its ability to prove the property or find a counterexample, since the envi-

ronment is unable to capture sufficient information. On the other hand, running

Clover with too large a bound affects the runtime negatively. This effect can be

observed in Figure 4.9 center and right, which show how the runtime varies with the

bound for a representative benchmark from the CHC-Comp and Mutual Recursion

sets, respectively. Note that at a bound 𝑘 < 2, Clover does not solve the given

CHC-Comp benchmark, and at 𝑘 < 5, Clover does not solve the given Mutual

Recursion benchmark. The best performance for these examples is achieved at the

93



lowest bound size at which Clover can solve the benchmarks, which is as expected,

since at these bound sizes, the bounded environments, and thereby the size of the

SMT queries, are smaller. As the bound increases, a point is eventually reached

where many of the bounded environments that Clover considers are the same as

unbounded environments, resulting in less of a performance penalty with increasing

bound values. In some cases, the performance may even improve slightly as shown in

the rightmost example in Figure 4.9 once all bounded environments become the same

as unbounded ones, since the interface component of the bounded context becomes

trivial to compute. These results confirm the expected trade-off between scalability

and environment relevance. The appropriate trade-off – i.e., the best bound param-

eter to use – depends on the type of program and property. As seen in Figure 4.9

(left), the bound values that lead to the most benchmarks being solved differ per

benchmark set. Rather than having a fixed bound, or no bound at all, the ability to

choose the bound parameter in Clover allows the best trade-off for a particular set

of programs. If the best bound is not known a priori, bound parameters of increasing

size can be determined empirically on representative programs.

There is also data on how the number and solving time for each type of SMT

query varies with the bound 𝑘, averaged over benchmarks in each set. Figure 4.10

shows the statistics on the average number of queries of each type, and Figure 4.11

shows data on the average time taken to solve the query. Here, for the sake of space,

OO and UO are used to denote cases where OOIL and UOIL rules are applied. These

data are from all runs for which Clover is successful and gives an answer of safe or

unsafe.

We can use these data along with the data in Figure 4.9 to (roughly) compare

an approach restricted to 𝑘 = 1 with an approach that allows 𝑘 > 1 in bounded

environments. Note that Clover differs significantly in other respects from tools
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Figure 4.10: Average number of SMT queries made by Clover as the bound changes (for suc-
cessful runs).

like Spacer and Smash that enforce 𝑘 = 1 in environments4, making it difficult to

perform controlled experiments to compare this aspect alone.

Note from Figure 4.10 that for the CHC-Comp and Mutual Recursion sets of

benchmarks, the number of SMT queries of all types is lower at 𝑘 > 1 in comparison

to 𝑘 = 1. This result indicates that benchmarks that can be solved with 𝑘 > 1

require on average fewer updates to procedure summaries than are needed on average

for benchmarks that can be solved with 𝑘 = 1, confirming the benefit of improved

relevance when going beyond a restricted environment with 𝑘 = 1. The data for the

4Unlike Spacer it does not use PDR to derive invariants, and unlike Smash it is not limited to
predicate abstractions.
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Figure 4.11: Average solve times of SMT queries made by Clover as the bound changes (for
successful runs).

Real-World does not follow this trend because a higher bound (𝑘 = 10) is needed to

solve the examples (as can be seen in Figure 4.9).

From Figure 4.11, it is clear that the OU and UU queries are cheaper than OO

and UO queries, which is expected since the latter require over-approximating the

target’s body. Unsurprisingly, OO queries are the most expensive. Average times

of non-OO queries for 𝑘 > 1 are lower than (or about the same as) average times

for 𝑘 = 1 for the CHC-Comp and Mutual Recursion sets but continue to increase

with 𝑘 in the Real-World set because solving the Montgomery benchmarks relies on

propagating under-approximations from increasingly large call graph depths.
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4.9 Related Work

There is a large body of existing work that is related to this chapter in terms of CHC

solving, program analysis, and specification inference.

4.9.1 CHC Solving

As mentioned in Chapter 2, program verification problems, including modular veri-

fication, can be encoded into systems of CHCs [84, 112, 85, 58]. Since the encoding

of program verification problems into systems of CHCs was proposed, the approach

has received a lot of attention within the research community, yielding many existing

tools for solving systems of CHCs [39, 103, 111, 149, 73, 43, 84, 95, 157].

A few techniques can be seen as using bounded or unbounded environments. In

particular, such notions are directly applicable to other deductive techniques for CHC

solving that use unfolding.

For example,Spacer [103], which is based on PDR [36, 65], can be seen as consid-

ering bounded environments but only allowing a bound of one (𝑘 = 1). Meanwhile,

Duality [112] can be seen as considering only unbounded environments. The differ-

ence between Duality and a PDR-like approach with respect to how much of the

environment is used has been referred to as the variable elimination trade-off [111],

where eliminating too many variables can lead to over-specialization of learned facts

(PDR) and eliminating no variables can lead to larger subgoals (Duality). The

ability to enable a trade-off between these two extremes served as motivation for the

development of the notion of parameterizable bounded environments introduced in

this chapter.

Algorithms in HSF [84], Eldarica [95] and LiquidHaskell [150] use

counterexample-guided abstraction refinement (CEGAR). Initial summaries are

inferred by using predicate abstraction and then refined by adding new predi-
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cates derived from potentially-spurious counterexamples. Such counterexamples

are analogous to unbounded environments, and these tools may face scalability

issues depending on how environments and procedures are considered. For example,

Eldarica makes disjunctive interpolation queries that grow larger with the number

of procedures involved in counterexamples [95].

Other techniques do not have any notions that correspond even analogously to

bounded environments. HoIce [39], FreqHorn [73], and LinearArbitrary [157]

are based on guessing summaries using machine learning and/or SyGuS techniques [8].

All of these approaches have trade-offs between scalability of the search space of

guesses and expressivity of guessed summaries.

Clover has many algorithmic differences from these efforts. Most existing tools

do not place any bounds on the environments (if they are used at all). This includes

approaches that unfold a relation at each step [111, 149] and CEGAR-based ap-

proaches [84, 95] where counterexamples can be viewed as environments. These tools

face scalability issues as environments grow; Duality makes larger interpolation

queries as more relations are unfolded [112], and Eldarica makes larger tree/dis-

junctive interpolation queries for counterexamples that involve more procedures [95].

Clover also has significant differences with Spacer, which, as mentioned previously,

can be seen as using a bounded environment of 𝑘 = 1, Other than Clover having

the ability to adjust the bound for the environment, another significant difference

between Spacer and Clover is that the former uses PDR-style bounded assertion

maps to perform induction, whereas Clover uses induction explicitly and derives

EC lemmas.

Most of the mentioned tools also do not learn implications that relate procedure

summaries. Duality may implicitly use assumptions, and a couple of other tools [39,

149] do learn lemmas with implications, but none of them learn lemmas that, like EC

lemmas, are in forms that are well-suited for handling mutual recursion. The use of
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Syntax-Guided Synthesis [8] to search for procedure summaries is orthogonal to the

verification algorithm implemented in Clover; both approaches can be effectively

combined, as will be shown in Chapter 5, where the tool Flower uses SyGuS-based

techniques with and within the Clover algorithm to verify information-flow security

properties.

4.9.2 Program Analysis and Verification

As mentioned, encoding a program into a systems of CHCs and applying a CHC solver

provides one avenue for implementing a program verifier, with several such program

verifiers including a front-end for converting a program into a system of CHCs and

using any one of the CHC-solving methods described above in the backend to solve

the resulting system [84, 112, 85, 58]. Other than CHC-based methods, there are

techniques such as abstract interpretation [51, 52, 69] and interprocedural dataflow

analysis [136, 128] that can infer procedure summaries and perform modular verifica-

tion. These approaches often use fixed abstractions and path-insensitive reasoning,

which may result in over-approximations that are too coarse for verification.

The software model checker Bebop [18] in SLAM [19] extended interprocedural

dataflow analysis with path sensitivity. It was used successfully to verify device

drivers in SLAM [19], a pioneering work in software model checking that inspired

new generations of verifiers, including the CHC solvers and several other program

verifiers mentioned in this chapter. Related model checkers include a direct precursor

to Duality [112, 110] and other adaptations of PDR to software [93, 45], which can

be seen as precursors to Spacer [103]. Of these, GPDR [93] is similar to Spacer, but

lacks modular reasoning and under-approximations. Specification inference (including

Houdini-style learning [77]) has also been used to enable modular verification of

relational programs [104] (and is employed in Flower as well, as described in the

next chapter).
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Another relevant tool is the modular verifier Smash [82]. It uses context-sensitive

over- and under-approximate procedure summaries, and alternation between them.

Smash demonstrated the benefits of maintaining over- and under-approximate

summaries that interact with one another, inspiring later work such as that on

Spacer [103] and Clover to use both over- and under-approximate summaries

and to allow them to influence each other. Smash has an analogous concept to an

environment for a procedure call, where the “environment” for a procedure call is

expressed as a pair of a precondition and a postcondition, where the former is an

under-approximation of the program execution preceding the call, and the latter is an

over-approximation of the program execution following the call. These environments

can be viewed as analogous to bounded environments with a fixed bound of 1,

similar to Spacer’s. Note that in contrast to summaries found by CHC-solving

methods, which are often arbitrary first-order logic interpretations of uninterpreted

predicates representing the procedure calls, procedure summaries in Smash are of

the form of a pair of a precondition and postcondition, each of which is comprised

of predicate abstractions. In contrast, CHC solvers can provide summaries that are

richer formulas in first-order logic theories and need not rely on predicate abstraction

unlike Smash and other related tools [82, 81, 86].

4.9.3 Specification Inference

Many past efforts [9, 12, 30, 126, 140, 153] focused on learning coarse interface spec-

ifications or rules specifying the correct usage of library API calls, rather than learn-

ing logical approximations of procedures. Other specification inference techniques

learn procedure summaries for library API procedures by using abstract interpreta-

tion [91, 52] or learn information-flow properties about the procedures [108].

Other related work [4] infers maximal specifications for procedures with unavail-

able bodies, and other techniques assume an angelic environment setting [35, 57]
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– specifications inferred by these techniques may not be valid over-approximations.

The recent HornSpec [131] performs inference of maximal non-vacuous specifica-

tions for inputs provided as systems of CHCs; it relies on forward and backward

reasoning in the style of deductive CHC-solving techniques like the one presented in

this chapter and Spacer [103]. Another technique [15] also uses interpolation to infer

over-approximate summaries and leverages different SMT theories for scalability but

is not applicable to recursive programs.
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Chapter 5

Verification of information flow

security

The problem of verifying secure information flow is that of guaranteeing that a pro-

gram does not leak private inputs to public outputs. To solve this problem, one can

verify non-interference [83]: for any two runs of a program with the same public inputs

but possibly different private inputs, the public outputs of the program are equal. As

mentioned in Chapter 2, this property is an instance of a 2-safety hyperproperty, i.e.,

a relational property involving more than one execution of the same program. In

practice, non-interference is often too strong a property to enforce. For example, a

password recognizer would have its public output be influenced by whether or not the

user-provided private input is the correct password. A common approach is to allow

values that need to be leaked to be declassified [132].

Barthe et al. proposed verifying secure information flow by reducing it to safety

verification on a product or self-composed program [28]. Despite advancements in au-

tomated program verifiers, the ability to perform successful safety verification in prac-

tice can depend critically on how the product program is constructed. Construction of

product programs has thus been a focus in subsequent efforts [148, 27, 25, 26, 89, 48,
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59, 41, 42, 155, 139], as explained in more detail Chapter 2. These efforts encompass

various syntactic and semantic transformations, heuristics, and use of reinforcement

learning for constructing suitable product programs. Some relational property veri-

fiers avoid explicitly constructing product programs altogether [143, 32, 29, 31, 70, 13].

This chapter addresses a related but distinct limitation of existing efforts based

on reduction to safety. Most such techniques are non-modular, i.e., they neither

leverage nor infer relational specifications for procedures in interprocedural programs.

In general, modular verification offers significant benefits over non-modular techniques

– it is inherently more scalable, can provide procedure interface contracts (not only

verification results), and can improve code understanding and maintenance. For

example, relational specifications of procedures can provide security contracts for

library APIs, such as in the s2n implementation of the TLS protocol [11].

A few other approaches do leverage relational specifications of procedures, but

they either restrict both copies of the program to always follow the same control

flow [25] or are not automated [66, 89]. In particular, the work by Eilers et al. [66]

proposes a modular product program (MPP) construction, which is suitable for per-

forming modular relational program verification. Intuitively, this enables reduction

to safety on a per-procedure basis without constructing a monolithic product pro-

gram. In their implementation, the Viper language was extended to support infor-

mation flow specifications, and Viper back-end verifiers checked secure-information-

flow properties on benchmarks, but each procedure required user-provided relational

invariants and related annotations rather than relying on tools to derive them auto-

matically. Placing this annotation burden on users becomes a barrier to automated

verification.

As seen in the previous chapter, deriving sufficient relational invariants for proce-

dures is a challenging problem, and existing off-the-shelf safety verifiers [77, 5, 130,

103, 121, 72, 157] may not be able to infer them. For verifying secure information
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flow, such invariants often have a special form that is unlikely to be produced by

standard interpolation and existing heuristics in these verifiers. For example, experi-

mental results (§5.7) show that Spacer often fails to infer invariants needed to verify

information flow in programs with recursion. The approach by Eilers et al. requires

users to provide such invariants and other related annotations, e.g., which procedure

inputs and outputs are private or public. The resulting verification conditions can

then be checked by theorem-provers such as SMT solvers.

In this chapter, I propose to augment the approach to modular program verifica-

tion described in Chapter 4 with Syntax-Guided Synthesis (SyGuS) [8] to automat-

ically infer useful relational specifications about information flow in procedures of a

MPP. The structure in information-flow specifications makes them suitable targets

for grammar-based enumerative search and synthesis. These inferred specifications

not only reduce the aforementioned annotation burden for proving secure information

flow but also aid in code understanding. The choice to work with MPPs is motivated

by two aspects: they enable modular relational verification and they allow leveraging

existing techniques for construction of suitable product programs within each pro-

cedure. An MPP can be encoded into a set of CHCs as any other program with

safety annotations, and the approach outlined here, when run on these CHCs, auto-

matically infers relational specifications that are sufficient for verifying the program

with respect to given security properties. If there are no given security properties,

our approach can still infer relational specifications for procedures that are useful for

code understanding or subsequent verification.

My SyGuS-based approach is based on an enumerative search using grammars

over a combination of tagged variables, program syntax (as preserved in the CHC

encoding), and certain kinds property templates derived from the syntax of a predicate

application’s environment. Enumerate-and-check approaches have been shown to be

effective for synthesis of quantifier-free invariants [120, 10, 72, 129] and more recently
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quantified invariants for CHCs handling arrays [74]. This work shows that such an

approach is also effective for information-flow properties.

This work proposes three templates to generate grammars for invariant synthesis:

one that expresses quantifier-free information-flow properties, and two that express

quantified properties, which are often difficult to handle by existing automated veri-

fiers. Of the latter two, one infers quantified information-flow properties over arrays,

and the other infers specifications involving the context in which a procedure is called

(as represented by the corresponding predicate application’s environment), making

this template well-suited for inferring properties where declassification has occurred

prior to the procedure being called, since the declassified values will be low-security

in the callee.

I have implemented this approach in a tool called Flower. An evaluation on

available benchmark examples demonstrates that it is effective in inferring useful re-

lational specifications of procedures, without requiring any user-provided annotations.

I have also compared Flower with other state-of-the-art tools: the hyperproperty

verifier Descartes [143] and the modular CHC-based verifier Spacer [103]. Exper-

iments demonstrate that Flower generally outperforms them, especially on bench-

mark examples that contain loops or recursion.

The work presented in this chapter has previously been presented and published

at a conference [124].

5.1 Motivating Example

This section demonstrates this approach on an example program P shown in Fig-

ure 5.1, inspired by a related work [50]. Though the technique itself operates on a

CHC encoding of the program, the description in this section will be in terms of the

program before the encoding takes place in order to provide intuition.
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main (int[] a, int n) {

a := init(a, 0);

outputter(a, 0);

return n;

}

init(a, i) {

if (i ≥ 64) return a;

declassify(a[i] = 0);

return init(a, i + 1);

}

outputter(a, i) {

if (i ≥ 64) return;

if (a[i] = 0) {

assert(low(a[i]));

print(a[i]);

}

outputter(a, i + 1);

}

main (b1 , b2 , a1 , a2 , n1 , n2) {

a1, a2 := init(b1, b2, a1,

a2, 0, 0);

assert(outputter(b1 , b2 , a1 ,

a2 , 0, 0));

return n1 , n2;

}

init(b1 , b2 , a1 , a2 , i1 , i2) {

if (¬(b1 ∧ i1 < 64 ∨
b2 ∧ i2 < 64))

return a1 , a2;

l1 := b1 ∧ i1 < 64

l2 := b2 ∧ i2 < 64

assume (l1 ∧ l2 ⇒
(a1[i1] = 0) = (a2[i2] = 0));

return

init(l1 , l2 , a1 ,

a2 , i1 + 1, i2 + 1);

}

outputter(b1, b2, a1, a2, i1, i2) {

if (¬(b1 ∧ i1 < 64 ∨
b2 ∧ i2 < 64))

return true;

l1 := b1 ∧ i1 < 64;

l2 := b2 ∧ i2 < 64;

t1 := l1 ∧ a1[i1] = 0;

t2 := l2 ∧ a2[i2] = 0;

print(t1, t2, a1[i1], a2[i2]);

ok := t1 ∧ t2 ⇒ a1[i1] = a2[i2];

ok := ok ∧
outputter(b1 , b2 , a1 , a2 ,

i1 + 1, i2 + 1);

return ok;

}

Figure 5.1: Example (left: original (P), right: modular product program (MP)).

In main, a call to init makes initial assumptions about the array a: for each of

the first 64 values in the array, the information about whether or not the value is

0 is declassified recursively. Then, these 64 entries are printed out by the recursive

procedure outputter, which contains an assertion that checks that each of the values

printed out is public (i.e., low-security) output. Finally, main returns its second

argument.
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The security primitives used in this example are low, which is a predicate that

holds iff its argument is a low-security variable, and declassify, which has the effect

of making the value of its argument low-security after the point where declassify

is invoked. Without assumptions stating otherwise (i.e., either assume statements

that indicate that a value is low-security by using the low primitive or declassify

statements), we assume that all inputs are high-security. In the example, after init

is called and it declassifies each a[i] = 0 value for i < 64, then the information

about whether or not any of the first 64 entries in a is 0 is considered to be public

information. The outputter procedure prints out the value of values of a[i] for

i < 64 only under the condition that a[i] = 0. This behavior leaks exactly only

the declassified information, so the assertion is expected to hold for each call to

outputter.

The modular product program MP for this example is shown in Figure 5.1 (right).

Note that for each variable in P (even if irrelevant to verification), MP has two copies

reflecting the two executions of the program, e.g., n is translated to n1 and n2.

For each procedure in P, two Boolean activation variables b1 and b2 are added as

inputs to the corresponding procedure in MP, where they respectively indicate whether

the control flow in the corresponding copy of the program has reached the callsite.

The idea is that relational specifications for procedures hold when both copies of

the program have reached the same callsite, i.e., when both activation variables of

the callee are true. As a result, all the relational specifications that we infer are

implications in which the antecedent contains at least b1 and b2 as conjuncts.

The translation to MP also shows how the information-flow operation declassify

is encoded as an assumption, and how the information-flow specification low(a[i])

is translated into a relational property t1 ∧ t2⇒ a1[i1] = a2[i2] in MP, where t1 and

t2 were the activation variables under which the specification low(a[i]) occurred.
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Finally, note that the assertion in outputter has been hoisted [105] to main in MP,

with the return value of outputter being true if and only if no assertion failed.

The proposed technique will infer quantifier-free information-flow properties for

each procedure (i.e., procedure summaries that involve information-flow information).

For example, the technique can infer that for main of MP, the following property holds,

where res1 and res2 represent the return values of main:

b1 ∧ b2 ∧ n1 = n2⇒ res1 = res2

This property says that the output of main depends only on its second argument, and

it does not rely on any information about whether the second argument or output of

main is public or private, nor does it express any such information.

The technique also infers quantified invariants, e.g., 𝜑(i1):

∀𝑗1, 𝑗2.i1 ≤ 𝑗1 ≤ 64 ∧ 𝑗1 = 𝑗2 ⇒ (a1[𝑗1] = 0) = (a2[𝑗2] = 0)

It can then instantiate this property for the call to init in main to determine that 𝜑(0)

is true when the call to outputter is made. However, it cannot yet verify the program

because at this point we have not inferred sufficient properties for outputter.

Finally, it uses the context in which outputter is called to influence the guesses

that we make for the antecedent in its relational specification. Then it infers the

following property for outputter, where res is the return value of outputter:

b1 ∧ b2 ∧ 𝜑(0) ∧ i1 = i2 ∧ 0 ≤ i1⇒ res

Note that this property contains quantifiers because 𝜑(0) does. This property en-

ables us to verify that the assertion for the program holds, leading to a successful

conclusion.
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proc ::=𝑃 (𝑥1, . . . , 𝑥𝑚) returns (𝑦1, . . . , 𝑦𝑛) {stmt}
stmt ::=stmt1; stmt2 | (𝑥1, . . . , 𝑥𝑛) := 𝑒 | assert 𝑒 | assume 𝑒 | havoc 𝑥 |

if(𝑒) {stmt} | (𝑥1, . . . , 𝑥𝑛) := 𝑃 (𝑒1, . . . , 𝑒𝑚)

Figure 5.2: The syntax of procedures being considered for the MPP transformation

5.2 Modular Product Programs

This section will provide a brief description of product programs to make more ex-

plicit the intuition gained by examining the MPP in Figure 5.1. Recall that a 𝑘-

hyperproperty expresses a property over 𝑘 runs of the same program. Product pro-

grams convert 𝑘-hyperproperties into safety properties by creating 𝑘 renamed versions

of all the original variables. In contrast to ordinary product programs, modular prod-

uct programs (MPP) avoid duplicating control structures such as procedure calls by

introducing Boolean activation variables that indicate whether each program copy has

reached a certain execution point [66]. The current activation variable for copy 𝑖 is

true if and only if copy 𝑖 is currently at that location. Since this chapter is concerned

only with 2-hyperproperties, the remainder of this explanation will be specifically for

the construction of MPPs for 2-hyperproperties. This construction generalizes natu-

rally to 𝑘 > 2, and the full definition of how to construct a MPP for arbitrary 𝑘 can

be found in the original work on MPPs [66].

For a modular product program with 𝑘 copies, partial functions idx and getIdx

conveniently handle expressions with renamed copies of variables. For any expression

𝑒, getIdx (𝑒) = 𝑖 iff 𝑒 represents an expression only over variables from the 𝑖th copy;

and for any expression 𝑒 such that getIdx (𝑒) is defined: getIdx (idx (𝑒, 𝑖)) = 𝑖. For

example, idx (b ∧ i < 64, 2) = idx (b1 ∧ i1 < 64, 2) = b2 ∧ i2 < 64. We also use idx

to denote the lifting of idx to sets of expressions.

Let Figure 5.2 denote the syntax of a procedure 𝑃 . Program variables are denoted

by 𝑥 and 𝑦 and expressions by 𝑒. Note that loops are not included here because they

109



can be encoded as recursive procedures (and eventually will need to be for the later

CHC encoding). Similarly, conditionals with else branches are not included, since

an else branch can be captured with another if statement. Figure 5.3 gives the

transformation PP that converts a procedure proc into a MPP procedure with the

same name proc. Note that PPb transforms program statements to suitable ones for a

MPP using b1 and b2 as activation variables. Fresh activation variables are introduced

for every procedure and for any scopes within branches. Any procedure call uses the

innermost scope’s activation variables. All variables introduced by PP are assumed

to be fresh variables (e.g., b′1, b
′
2, 𝑎1, . . . , 𝑎𝑚, 𝑡1, . . . , 𝑡𝑛), and alt(𝑥1, . . . , 𝑥𝑛) is short

for idx (𝑥1, 1), idx (𝑥1, 2), . . . , idx (𝑥𝑛, 1), idx (𝑥𝑛, 2).

The transformation shown in Figure 5.1 has additional modifications than the

application of PP to each procedure. First, the assertion is handled differently than

described in Figure 5.3 because it is an information-flow-related assertion. Such as-

sertions are left alone and expanded into relational assertions after the MPP transfor-

mation. Similarly, there is a declassify statement in the program that is expanded

into relational assumption; the details of how this is performed are provided in the

subsequent section, but this expansion occurs after the MPP transformation. Fi-

nally, during the encoding of a program into a set of CHCs, assertion hoisting is

applied [105]. The MPP shown in Figure 5.3 has had information-flow-related asser-

tions hoisted and a Boolean variable ok introduced to keep track of whether or not

an assertion violation has occurred.

5.3 Secure Information Flow

We use a standard reduction [28] of a (termination-insensitive) secure-information-

flow property to a 2-hyperproperty called non-interference [83], which ensures that

private inputs do not impact public outputs. For a procedure f, this is formalized as
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PP(𝑃 (𝑥1, . . . , 𝑥𝑚){stmt}) =𝑃 (𝑏1, 𝑏2, alt(𝑥1, . . . , 𝑥𝑚)) returns alt(𝑦1, . . . , 𝑦𝑛)

{PPb(stmt)}
PPb(stmt1; stmt2) =PPb(stmt1);PP

b(stmt2)

PPb((𝑥1, . . . , 𝑥𝑛) := 𝑒) =if(b1) {idx ((𝑥1, . . . , 𝑥𝑛), 1) := idx (𝑒, 1)};
if(b2) {idx ((𝑥1, . . . , 𝑥𝑛), 2) := idx (𝑒, 2)}

PPb(assert 𝑒) =if (b1) {assert idx (𝑒, 1)};
if (b2) {assert idx (𝑒, 2)}

PPb(assume 𝑒) =if (b1) {assume idx (𝑒, 1)};
if (b2) {assume idx (𝑒, 2)}

PPb(havoc 𝑥) =if (b1) {havoc idx (𝑥, 1)};
if (b2) {havoc idx (𝑥, 2)}

PPb(if(𝑒) {stmt}) =b′1 := 𝑏1 ∧ idx (𝑒, 1);

b′2 := 𝑏2 ∧ idx (𝑒, 2);

PPb′(stmt)

PPb((𝑥1, . . . , 𝑥𝑛) :=

𝑃 (𝑒1, . . . , 𝑒𝑚)) =if (b2 ∨ b2){
if(b1){idx ((𝑎1, . . . , 𝑎𝑚), 1) := idx ((𝑒1, . . . , 𝑒𝑚), 1)};
if(b2){idx ((𝑎1, . . . , 𝑎𝑚), 2) := idx ((𝑒1, . . . , 𝑒𝑚), 2)};
(alt(𝑡1, . . . , 𝑡𝑛)) := 𝑃 (b1, b2, alt(𝑎1, . . . , 𝑎𝑚));

if(b1){idx ((𝑥1, . . . , 𝑥𝑛), 1) := idx ((𝑡1, . . . , 𝑡𝑛), 1)};
if(b2){idx ((𝑥1, . . . , 𝑥𝑛), 2) := idx ((𝑡2, . . . , 𝑡𝑛), 2)};

}

where for any �⃗� = 𝑦1, . . . , 𝑦𝑛, alt(�⃗�) is the tuple
(idx (𝑦1, 1), . . . , idx (𝑦𝑛, 1), idx (𝑦1, 2), . . . , idx (𝑦𝑛, 2))

Figure 5.3: How to transform a procedure into a procedure in a MPP
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follows:

∀l⃗i1, ⃗lo1, h⃗i1, h⃗o1, l⃗i2, ⃗lo2, h⃗i2, h⃗o2.

( ⃗lo1, h⃗o1) = f(l⃗i1, h⃗i1) ∧ ( ⃗lo2, h⃗o2) = f(l⃗i2, h⃗i2) ∧ l⃗i1 = l⃗i2 ⇒ ⃗lo1 = ⃗lo2

Variables l⃗i1 and l⃗i2 represent public inputs to f and ⃗lo1 and ⃗lo2 represent public

outputs. Variables h⃗i1 and h⃗i2 represent private input variables to f and h⃗o1 and h⃗o2

represent private outputs. Non-interference states that for any two runs of f, one

with inputs l⃗i1, h⃗i1 and one with inputs l⃗i2, h⃗i2, if their public inputs are equal (i.e.,

l⃗i1 = l⃗i2), then their public outputs should be equal (i.e., ⃗lo1 = ⃗lo2) regardless of the

private inputs’ values.

In a modular product program, relational properties become properties over a

single run and take the form of an implication whose antecedent implies the truth of

all activation variables, e.g., non-interference takes the following shape:

∀𝑏1, 𝑏2, l⃗i1, ⃗lo1, h⃗i1, h⃗o1, l⃗i2, ⃗lo2, h⃗i2, h⃗o2 .

𝑏1 ∧ 𝑏2 ∧ ( ⃗lo1, h⃗o1, ⃗lo2, h⃗o2) = f(𝑏1, 𝑏2, l⃗i1, l⃗i2, h⃗i1, h⃗i2) ∧ l⃗i1 = l⃗i2 ⇒ ⃗lo1 = ⃗lo2

Assertions such as assert(low(𝑒)) state that the value of expression 𝑒 should

be treated as a public output, and can be expanded in the MPP as b1 ∧ b2 ⇒

assert(idx (𝑒, 1) = idx (𝑒, 2)), where b1 and b2 are the activation variables for the

innermost scope containing the assert statement.

Requiring non-interference can be restrictive since programs may need some

amount of leakage to exhibit the desired behavior. Declassification can allow

secure-information-flow properties to be checked even for programs that leak some

information about high-security variables. Declassification is encoded in modular

product programs as an assumption that if both programs reach the same declassify

statement (i.e., if both activation variables are true), then the value being declassified

is equal across both copies of the program. Thus declassify(𝑒) is encoded as

assume 𝑏1 ∧ 𝑏2 ⇒ 𝑒1 = 𝑒2 in the MPP. Because private values are encoded as above
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as the absence of knowledge about whether an expression is equal across executions,

this encoding is sound [66].

5.4 SyGuS-based Summary Inference

This section describes the SyGuS-based algorithm for inferring procedure summaries

of modular product programs and using these summaries for verification. It takes

CHCs as input and maintains a mapping 𝑂 from uninterpreted predicates in the

CHCs to inductive interpretations (recall the notation and definitions for CHCs from

Chapter 2). The algorithm updates 𝑂 as it runs and maintains the invariant that

𝑀 ’s interpretations are inductive. The algorithm also contains a mapping 𝑈 from

predicates to under-approximate summaries, but this is only updated within the

GetPDGuesses procedure.

The top-level procedure (Algorithm 9) begins with an initial mapping 𝑂 from

each 𝑛-ary predicate 𝑅 ∈ R to the coarsest interpretation possible and an initial

mapping 𝑈 from each 𝑛-ary predicate 𝑅 ∈ R to the most restrictive interpretation

possible. In pseudocode, CheckGuesses(𝐺,𝑂,𝑅) refers to an iterative procedure

over all CHCs, where each application 𝑅(�⃗�) of symbol 𝑅 is replaced by formula

𝜆�⃗�.𝑂[𝑅](�⃗�) ∧ makeGuess(𝐺)(�⃗�), where 𝐺 is a set of guessed interpretations for 𝑅

based on grammar templates and makeGuess(𝐺) = 𝜆�⃗�.
⋀︀
{𝑔(𝑥) | 𝑔 ∈ 𝐺}.

The CHCs after the replacement are checked for validity using an SMT solver:

if for some CHC 𝐶, the corresponding implication does not hold, then the current

interpretations for 𝑅 (which must appear in 𝐶) are weakened in 𝐺 (using, e.g., the

Houdini algorithm [77]), and the internal loop in CheckGuesses is repeated. A

new inductive mapping 𝑂′ is returned as the result of CheckGuesses, where 𝑂′[𝑅] =

𝜆�⃗�.𝑂[𝑅](�⃗�)∧makeGuess(𝐺′)(�⃗�), where 𝐺′ is the subset of the original set 𝐺 passed as

an argument to CheckGuesses that resulted from any weakening from the internal
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Algorithm 9 Top-level verification and summary inference procedure.
1: procedure InferSum(CHCs C with uninterpreted predicates R )
2: for 𝑅 ∈ R do 𝑂[𝑅]← 𝜆𝑥1, . . . , 𝑥𝑛.⊤
3: for 𝑅 ∈ R do 𝑈 [𝑅]← 𝜆𝑥1, . . . , 𝑥𝑛. ⊥
4: for 𝐶 ∈ C where 𝐶 = body ⇒ 𝑅(�⃗�) do
5: 𝐺← GetQFGuesses(𝐶) ∪ GetQuantifiedGuesses(𝐶)
6: 𝑂 ← CheckGuesses(𝐺, 𝑂, 𝑅)

7: while 𝑂 is not a solution for C do
8: 𝑄← GetUnsatisifiedQuery(C)
9: C ′ ← C ∖ GetUnsatisfiedQueries(C)
10: (result ,Goal)← VerifyWithGuesses(C ′, 𝑂, 𝑈 , 𝑄)
11: 𝑂 ← 𝑂 in Goal
12: 𝑈 ← 𝑈 in Goal
13: if result = unsafe then
14: return (unsafe, (𝑂,𝑈))

15: return (safe, (𝑂,𝑈))

Algorithm 10 Inference procedure for property-directed guesses.
1: procedure RefineOver(𝑀 , 𝑛)
2: for disjunct 𝑑 in body(𝑛) do
3: 𝐺← GetPDGuess(𝑀(benv(𝑛)), 𝑑, 𝑂)
4: 𝑂′ ← CheckGuesses(𝐺, 𝑂, 𝑅)
5: if 𝑂′ ̸= 𝑂 then return 𝑂′

6: return 𝑂

loop in CheckGuesses. Note that 𝑂 is already inductive whenever CheckGuesses

is called, so CheckGuesses would return 𝑂 in the worst case.

General quantifier-free and quantified guesses For each CHC 𝐶, the algo-

rithm generates initial guesses for an uninterpreted predicate in the head of 𝐶 based

on the templates specified later in Sec. 5.5 and 5.6.1.

After 𝑂 has been updated based on these guesses, 𝑂’s interpretations will have

captured information-flow summaries for each procedure. If 𝑂 is a solution for the

system of CHCs, then these summaries may be sufficient for proving that the as-

sertions of the program hold. Otherwise, the current procedure summaries are not

strong enough for proving that the assertions hold, and the algorithm aims to learn

additional property-directed summaries.
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Property-directed guesses A property-directed summary here refers to a sum-

mary that is learned while taking into account the property in some way. All the

summaries learned in Chapter 4 can be considered to be property-directed because

they all in some way are derived by factoring in the bounded environment. Re-

call that the bounded environment approximates the full environment containing the

body of the query CHC, and that the body of a query CHC specifies a property. To

get such property-directed summaries, the InferSum procedure invokes the Veri-

fyWithGuesses procedure, which is a modified version of the Verify procedure

from Algorithm 5 in Chapter 4.

The only difference between the VerifyWithGuesses and Verify procedures

is that for inferring over-approximate summaries, VerifyWithGuesses will first try

to guess over-approximate summaries using templates first, before falling back on the

interpolating-solver-based methods described in Chapter 4. Specifically, rather than

directly invoking the OOIL or UOIL procedures, it will first invoke the RefineOver

procedure shown in Algorithm 10 and then OOIL or UOIL. In the case of OOIL, the

argument 𝑀 for RefineOver will be 𝑂 and in the case of UOIL, it will be 𝑈 . Note

that falling back on the other methods allows for handling of cases where invariants

that are non-relational or otherwise do not fit into the template for guessed invariants

are needed to prove a relational property, since such properties may be found by

interpolating solvers.

The third template used to generate the guesses returned by GetPDGuess

is described later in Sec. 5.6.2. Each property-directed guess in 𝐺 (where 𝐺 is

GetPDGuess(𝑀(benv(𝑛)), body , 𝑂)) is such that if it is used as an interpretation

for 𝑅 in query CHC bctx (𝑛) with all the other predicates using their interpretations in

𝑀 , then the query CHC will be satisfied (i.e., 𝑀(benv(𝑛))∧𝑔(�⃗�) will be unsatisfiable

for all 𝑔 ∈ 𝐺).
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For such a 𝐺, makeGuess(𝐺)(�⃗�) can be viewed as an interpolant separating

body(𝑛) and 𝑀(benv(𝑛)) when tgt(𝑛) = 𝑅(�⃗�) for some 𝑅 ∈ R ; to populate 𝐺,

GetPDGuess generates guesses that obey the syntactic requirements for such an

interpolant and adds them to 𝐺 only after checking that they maintain the invariant

that makeGuess(𝐺)(�⃗�) is an interpolant.

Different orders in exploring nodes in VerifyWithGuesses may result in learn-

ing different summaries because it will lead to considering different pairs of formulas

for which interpolants need to be guessed. However, regardless of the order of explo-

ration, the summaries discovered throughout will constitute a solution for the system

of CHCs.

Note that if neither the templates nor the backend interpolating solver can guess

the required invariants, the top-level algorithm in Algorithm 9 may not terminate,

either because the second top-level loop may never terminate or because the Verify-

WithGuesses procedure itself may never return. The algorithm can be terminated

early by the user and still return the properties discovered so far, which may be useful

for code understanding and can provide hints to the user about manual annotations

that may be required. In our experiments (Sect. 5.7), no manual annotations in the

benchmark examples were needed to be able to solve them.

Theorem 5.4.1. InferSum only returns a result (safe, (𝑂,𝑈)) when 𝑂 is a solution

for the system of CHCs C and the original program is safe.

Proof. This follows directly from the definition of InferSum, since it will not exit

the while loop on line 7 of Algorithm 9 unless 𝑂 is a solution for the set of CHCs.

Recall from Chapter 2 that the solution 𝑂 for C consists of invariants that are strong

enough to show that the assertions in the original program (and captured by the

query CHCs) hold, so if a solution 𝑂 exists, the original program is safe.
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The following theorem shows that the mapping 𝑂 maintained by InferSum is

always inductive, so that checking the condition for the loop on line 7 of Algorithm 9

can be done just by checking whether the query CHCs are satisfied by the current

interpretations in 𝑂. (Recall from Chapter 2 that a solution for a system of CHCs is

an inductive mapping that satisfies all query CHCs in the system.)

Theorem 5.4.2. InferSum always maintains an inductive mapping 𝑂.

Proof. InferSum begins with 𝑂 being the inductive mapping that maps each 𝑛-ary

predicate 𝑅 to 𝜆𝑥1, . . . , 𝑥𝑛.⊤. 𝑂 can be updated only by assigning it to the result

of calls to CheckGuesses (either at the top-level of InferSum or within a nested

call to RefineOver), by updates made by other parts of the Clover algorithm’s

OOIL or UOIL procedures, or through updates made within VerifyWithGuesses,

which all always result in the updated mapping 𝑂 being an inductive. It follows that

𝑂 being inductive is an invariant throughout InferSum.

Finally, note that the proposed SyGuS approach is not inherently limited to veri-

fying secure information flow or to two copies of a program (𝑘 = 2). It can be adapted

to verify 𝑘-hyperproperties for 𝑘 > 2 by extending the basic grammar (shown later in

Figure 5.4) to cover target properties. Furthermore, our ideas on property-directed

guesses are not specific to information flow and can apply to other properties.

5.5 Grammar Templates without Quantifiers

Figure 5.4 lists the grammar used in the GetQFGuesses procedure (used in Algo-

rithm 9) to generate quantifier-free guesses that represent information-flow properties.

Each guess has the form of an implication and corresponds to a relational property

because the activation variables b1 and b2 always occur positively in the antecedent.

The antecedent (lhs) allows additional conjuncts expressing equalities (inEq) and
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guess ::= 𝜆�⃗�.lhs ⇒ rhs

lhs ::= 𝑏1 ∧ 𝑏2 | inEq ∧ lhs | inIneq ∧ lhs

rhs ::= outEq | ok | declassify
inEq ::= Eq(inArg) | EqArr(inArrArg , ctr)

outEq ::= Eq(outArg) | EqArr(outArrArg , ctr)

inIneq ::= 𝑐 < inIntArg | 𝑐 ≤ inIntArg | 𝑐 > inIntArg | 𝑐 ≥ inIntArg

Figure 5.4: Grammar for generating quantifier-free guesses for information flow.

inequalities (inIneq) over input arguments of procedures (inArg), including arrays

(inArrArg) indexed by expressions (ctr). The consequent (rhs) allows conjuncts ex-

pressing equalities (outEq) over output arguments of procedures (outArg , outArrArg),

the results of assertions (ok), or declassify expressions (declassify). In the equalities,

the expression Eq(𝑒) represents the equality 𝑒 = idx (𝑒, 2), and EqArr(𝑒, 𝑖) represents

the equality 𝑒[𝑖] = idx (𝑒[𝑖], 2). The inequalities allow comparison of input integer

arguments (inIntArgs) against constants (𝑐).

The terminals in our grammar are populated from a combination of variable types

and a syntactic analysis of the CHC encoding of the body of the target procedure. The

candidate variables include input/output parameters of procedure and outputs that

store the result of assertions. Various expressions are also extracted from the CHC

encoding to serve as terminals in the grammar, e.g., those representing indices in array

accesses, or consequents in declassify assertions. Other than activation variables and

the results of assertions, all terminals 𝑒 in the grammar are such that getIdx (𝑒) = 1

to reduce redundancy among guesses due to symmetry resulting from indices, e.g., in

equality expressions. The complete set of terminals is described below.

Tagging For a CHC with head R(�⃗�) that encodes a modular product procedure

r, each 𝑥 ∈ �⃗� is tagged as follows:

• in: if 𝑥 corresponds to a non-activation input argument x in r with getIdx (x) =

1;
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• out: if 𝑥 corresponds to an output ret in r with getIdx (ret) = 1;

• arr: if 𝑥 is an array;

• int: if 𝑥 is an integer;

• ok: if 𝑥 is an output value storing the result of assertions.

The following metavariables specify what the terminals based on tags range over:

• inArg : the set inArgs of variables tagged in;

• inArrArg : the set inArrArgs of variables tagged both in and arr;

• outArg : the set of variables outArgs tagged out;

• outArrArg : the set of variables outArrArgs of variables tagged both out and

arr;

• inIntArg : the set of variables inIntArg tagged in and int;

• ok : the set of variables tagged ok.

The activation variables in �⃗� are denoted 𝑏1 and 𝑏2.

Syntactic Analysis The terminal ctr is based on a syntactic analysis of the

body of the CHC passed as an argument to GetQFGuesses. It ranges over a set

ctrs comprising the following:

• all expressions 𝑒 with getIdx (𝑒) = 1 that occur in the procedure body within

subexpressions of the form 𝑎[𝑒] for some 𝑎;

• terminals that 𝑐 ranges over, consisting of all integer constants that occur as the

right- or left-hand side of equalities or inequalities in the body of the procedure;
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• terminals that declassify ranges over, which consists of the consequents 𝑒1 = 𝑒2

of any implications of the form 𝑏1 ∧ 𝑏2 ⇒ 𝑒1 = 𝑒2, where 𝑏1 and 𝑏2 are Boolean

variables, getIdx (𝑒1) = 1, and getIdx (𝑒2) = 2.

5.6 Grammar Templates with Quantifiers

In this section, I present two templates for generating guesses with quantifiers – one

for arrays and the other for property-directed invariants.

5.6.1 Quantified Templates for Arrays

This GetQuantifiedGuesses procedure used in Algorithm 9 generates guesses

for quantified invariants for a given procedure by adapting a technique from prior

work [74] to target relational properties. We consider here the task of generating

a quantified invariant from a CHC body(�⃗�) ⇒ 𝑅(�⃗�). This quantified invariant con-

stitutes a potential over-approximate summary for the procedure encoded by 𝑅. A

guess for a quantified invariant is constructed from four parts:

• a set of quantified variables qVars not in �⃗�,

• a range formula over the variables in inIntArgs ∪ qVars ,

• a set of equalities over variables in qVars ∪ inIntArgs ∪ idx (inIntArgs , 2),

• a cell property formula over the variables in �⃗� ∪ qVars .

All these components except equalities come directly from prior work [74], which

combined them to form a candidate invariant: ∀qVars .range ⇒ cell property . The

approach for the information flow context is similar but uses equalities to guess in-

variants over both program copies. It also uses activation variables in the antecedent

of the implication so that the candidate invariant only applies when both program
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copies are aligned. Here the template only generates range formulas over variables

for the first program copy and uses the equalities to ensure that the corresponding

variables in the second copy are equal to those in the first.

Quantified variables and range variables are determined similarly to previous

work [74]. For each variable i in inIntArgs ∩ ctrs used to access an array index, two

fresh quantified variables q1 and q2 are added to qVars , where idx (q1, 2) = q2. We

let quant(i) = q1. For each such variable, GetQuantifiedGuesses also generates

a range formula that is an inductive invariant for 𝑅 of the form:

range ::= i ≤ q1 < boundGt | boundLt < q1 ≤ i

Here, boundGt is the set of expressions 𝑒 over variables �⃗� for which 𝑖 < 𝑒 or 𝑒 > 𝑖

occurs as a subexpression of body , the body of a procedure. Similarly, boundLt is the

set of expressions 𝑒 over variables �⃗� for which 𝑒 < 𝑖 or 𝑖 > 𝑒 occurs as a subexpression

of body . Let the set ranges denote the set of such range expressions that are inductive

for 𝑅 (which is first checked for each such candidate).

For each variable i in inIntArgs∩ctrs , GetQuantifiedGuesses generates equal-

ity quant(i) = idx (quant(i), 2) and equality i = idx (i, 2) and adds them to the set

equalities .

Finally, to generate cell properties, GetQuantifiedGuesses considers the sub-

set of expressions generated by the grammar in Figure 5.4 that contain accesses to

array cells (also known as select-terms and denoted [·]) with indices Idx such that for

each 𝑖 ∈ Idx , ranges contains an expression containing idx (𝑖, 1). It takes each such

expression 𝑒 and substitutes each occurrence of any variable 𝑖 ∈ inIntArg ∩ ctr with

quant(𝑖). It then adds the resulting expression to the set cellProps .

For each cellProp ∈ cellProps , we generate the following candidate invariant:

𝜆�⃗�.∀qVars .
⋀︁

ranges ∧
⋀︁

equalities ∧ 𝑏1 ∧ 𝑏2 ⇒ cellProp
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5.6.2 Property-Directed Templates

The final template allows for the generation of property-directed guesses for a par-

ticular procedure r given a mapping 𝑂 to inductive interpretations and a mapping

𝑀 for approximating an environment. This template, used by the GetPDGuess

procedure in Algorithm 10 consists of two parts: a context guess and a quantifier-free

guess. As mentioned previously, it aims to find interpolants using SyGuS rather than

an interpolating solver. The context guess is used to incorporate relevant properties

from the context into the guess, and the quantifier-free guess is used to strengthen it.

I first describe how to generate the context guess for a node 𝑛 and mapping

𝑀 . Let Ands be the set of conjuncts in 𝑀(benv(𝑛)). Each element of the powerset

P (Ands) can become a context guess. We are interested only in elements 𝑝 in P (Ands)

that represent properties that, while initially not guaranteed to be true whenever r

is called, are guaranteed to hold for any subsequent recursive calls to r provided

that they held at the initial invocation of r. The technique discovers the largest set

conseqAnds ⊆ P (Ands) that represents such properties through a procedure based on

the Houdini algorithm [77] (as shown in the algorithm in Figure 11).

The procedure in Figure 11 examines each CHC in C with an application of 𝑅 to

variables �⃗� in its head. The mapping 𝑂′ maps 𝑅 to the interpretation 𝜆�⃗�.
⋀︀
Ands

but is otherwise the same as the current mapping 𝑂. For each such CHC, it checks if

𝑂′(𝑅) is inductive (line 5) and uses a model cti returned by the backend SMT solver

(called a counterexample-to-induction) to weaken Ands . It filters out the conjuncts

FalseConj of Ands that do not represent properties that are guaranteed to hold for

the recursive call. It can now use P (conseqAnds) as the set of context guesses.

Quantifier-free guesses QFGuesses for body ⇒ 𝑅(�⃗�) are generated as shown in

Sec. 5.5, except now the set 𝑐 of integer constants also includes all integer constants

in benv(𝑛).
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Algorithm 11 Procedure to find largest useful element in P (Ands).
1: procedure Filter(Ands, 𝑅(�⃗�), C , 𝑂)
2: 𝑂′ ← 𝑂[𝑅 ↦→ 𝜆�⃗�.

⋀︀
Ands]

3: for body ⇒ 𝑅(�⃗�) ∈ C do
4: for application 𝑅(�⃗�′) in body , context ctx do
5: query ← 𝑂′(𝑅)(�⃗�) ∧𝑂′(ctx ) ∧ ¬𝑂′(𝑅)(�⃗�′)
6: if query satisfiable then
7: cti ←GetModel(query)
8: FC ←FalseConjs(m, 𝑂′(𝑅)(�⃗�′), Ands)
9: return Filter(Ands ∖ FC , 𝑅, C , 𝑂)

10: return Ands

Algorithm 12 describes how the bounded environment and quantifier-free guesses

are combined to make a guess for a node 𝑛 with uninterpreted predicate pr(𝑛) = 𝑅

and the current over-approximate summaries in 𝑂. For each 𝜆�⃗�.lhs ⇒ rhs ∈ QFGuess

and 𝑝 ∈ P (conseqAnds), CombineGuess considers the mapping 𝑂′ = 𝑂[𝑅 ↦→

𝜆�⃗�.𝑂[𝑅](�⃗�) ∧ rhs ], which is the same as the mapping 𝑂 except the interpretation

for 𝑅 is updated to 𝜆�⃗�.𝑂[𝑅](�⃗�) ∧ rhs . If 𝑂′(ctx ) is unsatisfiable and lhs ∧ 𝑝 is satis-

fiable (line 5), we generate the following guess: 𝜆�⃗�.lhs ∧ 𝑝 ⇒ rhs . We only consider

guesses such that 𝑂′(𝑑 ∧ benv(𝑛)) is unsatisfiable because these guesses are the only

ones that can serve as an interpolant between 𝑑 and benv(𝑛). The 𝑑 here is a disjunc-

tion contained within body(𝑛), so serving as an interpolant between 𝑑 and benv(𝑛)

is a prerequisite for serving as an interpolant between body(𝑛) and benv(𝑛). This

requirement ensures that the guesses considered help make progress toward updating

𝑂 so that 𝑂[𝑅] is an interpolant for body(𝑛) and benv(𝑛). This in turn ensures that

progress is made toward proving the assertion in the original program corresponding

to query 𝑄.

The checks on line 5 guarantee that each element added to Guesses , when applied

to �⃗�, is an interpolant separating 𝑂′(𝑑) and 𝑂′(benv(𝑛)). If all guesses in Guesses ,

are interpolants separating these formulas when applied to �⃗�, then it follows that

makeGuess(Guesses)(�⃗�) is also such an interpolant. Note that these guesses may

contain quantifiers if the interpretations in 𝑂 contain quantifiers.
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Algorithm 12 Inference procedure for property-directed guesses.
1: procedure CombineGuess(QFGuess, conseqAnds, 𝑂, 𝑛, 𝑑)
2: for 𝜆�⃗�.lhs ⇒ rhs ∈ QFGuess do
3: for 𝑝 ∈ P (conseqAnds) do
4: 𝑂′ ← 𝑂[𝑅 ↦→ 𝜆�⃗�.𝑂(𝑅)(�⃗�) ∧ rhs]
5: if 𝑂′(𝑑 ∧ benv(𝑛)) unsat, lhs ∧ 𝑝 sat then
6: Guesses ← Guesses ∪ {𝜆�⃗�.lhs ∧ 𝑝⇒ rhs}

5.7 Implementation and Evaluation

I have implemented this technique in a tool called Flower, developed on top of the

CHC solver FreqHorn [72, 73]. I evaluated it on a suite of benchmarks1 from the

literature and real-world examples.

In the implementation, all candidate guesses allowed by the grammars are enu-

merated and checked, i.e., there is no further heuristic selection (currently) in the

tool. Although this lack of heuristic selection can be problematic if there are too

many guesses, the tool did not encounter this issue in practice. For property-directed

guesses, the unfoldings are explored in a breadth-first like manner.

Benchmarks Of the 29 benchmarks, 15 are based on a subset of the evaluation

set for MPPs [66, 13, 20, 50, 25, 56, 79, 141, 148]. The subset was obtained by leaving

out termination-related properties, since automating the verification of these would

require the synthesis of ranking functions, which is not supported by Flower. While

small in size, with the original programs ranging from 24-70 lines of Viper [116] code,

these programs include non-trivial features such as arrays and declassification that

are challenging for automated verifiers. I added two benchmarks based on code from

Amazon Web Service’s s2n [11], about 160 lines of SMT-LIB2 code that involve

reading/writing from buffers. We also translated six benchmarks based on Blazer’s

“Literature” and “STAC” benchmarks [13], which ranged from 41-208 lines of Java.

1Available at https://github.com/lmpick/flower-benchmarks
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The Viper benchmarks contained many manual annotations of information-flow

specifications for both procedures and loops. In this evaluation, I treated the specifica-

tion for the apparent top-level procedure as an assertion and eliminated the remaining

annotations. Loops were encoded as recursion, as is typical in CHC encodings. Mem-

ory locations and memory-related annotations in the benchmarks were not encoded

in CHCs; structures were either flattened or encoded as arrays.

The Blazer benchmarks considered were written in Java and originally checked

for timing side channels. Checking for timing side channels can be reduced to checking

for noninterference with appropriate instrumentation [17]. I manually instrumented

these benchmarks in this way and encoded them into CHCs.

Evaluation I also compared the tool against Descartes [143] and Spacer [103].

For Descartes, I translated the CHC benchmarks into intraprocedural Java pro-

grams.

Results from experiments on the suite of 29 benchmarks with a timeout of 10

minutes are shown in Table 5.1. Blazer benchmarks are prefixed with “B” and

s2n benchmarks are prefixed with “s2n.” A timeout is indicated with TO and an

unknown result with U. N/A indicates that Descartes was unable to handle the

benchmark because of the presence of arrays or declassification. Benchmarks were

run on a MacBook Pro, with a 2.7GHz Intel Core i5 processor and 8GB RAM.

Flower is able to solve all 29 benchmarks, including all 15 benchmarks originally

used to assess the usefulness of MPPs. Note that Flower successfully solved all these

examples without the annotations required by Viper[116]. These results demonstrate

the effectiveness of the presented approach in reducing the annotation burden for

verifying secure information flow.

Spacer is able to solve 14 of the 29 benchmarks, timing out for 14, and reporting

U for one. Descartes cannot handle the majority of the benchmarks; of the 10
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benchmarks it can take as input, Descartes solves 5. Out of the 20 examples

with recursion (marked in Column 2), Spacer can only solve 5, whereas our tool

can handle all 20. Spacer finds invariants via interpolation, which is unlikely to

directly capture relational properties, so it is unable to find suitable invariants for

these recursive procedures. For recursion-free examples, relational invariants are less

crucial; invariants capturing precise behaviors are easier to find and are often sufficient

for verification.

Descartes is similarly unable to find appropriate invariants. For each of the 5

recursive benchmarks that it can take as input, it is unable to find the required loop

invariant to verify the program. Although Descartes also uses a template-based

approach for generating candidate invariants, the templates are insufficient for these

benchmarks.

To evaluate scalability, I considered multiple versions of the Costanzo benchmark

with different array bounds (shown in parentheses in Table 5.1). Figure 5.5 shows

the performance comparison against Spacer as the array bound increases. Spacer’s

behavior indicates its inability to find relational properties; it learns properties for

each array index individually, rendering it unable to solve the Costanzo benchmark

within 10 minutes after the array bound reaches 16 (note that the original Costanzo

benchmark has bound 64). Although it was run in a mode that allows it to learn

quantified properties, Spacer is unable to find the desired relational property. In

contrast, our approach solves all the bounded Costanzo benchmarks in about the same

time because the quantified guesses are the same except for the constant bound.

Our approach is also able to solve the Costanzo benchmark in which the array is

unbounded, which Spacer is unable to do.
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Table 5.1: Results for 29 benchmarks. Times shown in seconds.

Example Recursive Flower Spacer Descartes
Time Time Time

Banerjee 8.00 0.04 N/A
B GPT14 X 73.91 TO U
B K96 X 12.60 TO U
B Login X 18.20 TO N/A
B ModPow1 X 60.86 TO U
B ModPow2 X 104.59 TO U
B PWCheck X 18.04 TO N/A
Costanzo (2) X 3.94 0.65 N/A
Costanzo (4) X 3.85 7.10 N/A
Costanzo (8) X 3.85 62.50 N/A
Costanzo (16) X 4.08 TO N/A
Costanzo (32) X 3.88 TO N/A
Costanzo (64) X 3.93 TO N/A
Costanzo (unbounded) X 8.17 TO N/A
Darvas 2.04 0.03 N/A
Declassification X 4.91 0.03 N/A
Joana Fig. 1 top left 0.96 0.03 N/A
Joana Fig. 2 bottom left 0.90 0.02 0.06
Joana Fig. 2 top 0.58 0.02 0.08
Joana Fig. 13 left 0.25 0.03 0.07
Kusters 8.07 0.03 0.09
Main Example X 135.90 U N/A
Main Example (det.) X 13.98 TO N/A
s2n Ex. 1 X 352.70 0.06 N/A
s2n Ex. 2 X 30.95 TO N/A
Smith X 23.26 TO N/A
Terauchi Fig. 1 0.40 0.03 0.08
Terauchi Fig. 2 0.84 0.03 N/A
Terauchi Fig. 3 X 3.55 TO U

5.8 Related Work

There are many related efforts in relational and hyperproperty verification, CHC

solving, information-flow checkers, and syntax-guided synthesis. A large body of

the related work in relational and hyperproperty verification has been described in

Sect. 3.5, so in this section I will highlight the aspects that are relevant for the work

presented in this chapter. For related work on CHC solving, see Sect. 4.9.
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Figure 5.5: Timing results for Costanzo benchmark with different array bounds.

5.8.1 Relational Program Verification

While this work focuses on modular product programs [66], many other approaches

also reduce relational program verification to safety verification [148, 28, 27, 25, 26, 89,

48], including those that employ a reduction to systems of CHCs [115, 59]. However,

most do not perform modular reasoning over procedures but inline them, and do not

generate relational specifications for procedures.

Other than the work on MPPs [66], which works only for hyperproperties, there

exist few other approaches that allow for automated modular reasoning over relational

programs. One such approach restricts both copies of the program to always follow

the same control flow [25]. Another such approach uses mutual summaries to capture

relational specifications of procedures [89], but similarly to work on MPPs, this work

also does not provide an automatic procedure for inferring summaries. There is one

synchronization approach that uses property-directed reachability and uses modular

reasoning for inference of relational procedure summaries [103, 93, 115], but experi-

ments in Sect. 5.7 show that Spacer alone often fails to infer the needed invariants in

programs with recursion. This dearth of techniques for inferring modular relational

procedure summaries motivated the work on Flower described in this chapter.
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5.8.2 Information-Flow Properties and Verification

Most automatic hyperproperty verifiers can handle information-flow properties by

constructing product programs either implicitly [143, 70] or explicitly [25, 26, 66],

or by lazily performing self-composition [139, 155] or synchronization [115, 59], as

mentioned above.

Other efforts focus on quantitative information flow, where the aim is to verify

resource leakage, such as the presence of timing side channels [13, 41, 17]. With

appropriate instrumentation for resource leakage [17, 41], checking for timing leakage

can be reduced to hyperproperty verification. In particular, the absence of timing side

channels can be reduced to checking for non-interference after appropriate resource

usage instrumentation, allowing tools for checking non-interference to check for the

absence of timing side channels as well, as demonstrated in the evaluation of Flower

in Sect. 5.7.

Approaches based on types and abstract interpretation can modularly infer

information-flow properties of procedures. There are many type-inference-based

approaches for checking secure information flow [62, 151, 117, 122, 20, 146],

many of which are aware of programming-language specific features such as

objects [122, 117, 20, 146] or are even modular with respect to program struc-

ture [146]. Such approaches employ a security type system such that terms only

type check if they do not have any illegal information flows (e.g., from low-security

to high-security variables). There are also approaches based on dynamic taint

analysis [133, 49, 53, 99, 135, 142], which involves instrumenting code with taint

variables and code to track taint. However, type-inference-based and taint analysis

approaches suffer from imprecision (e.g., due to path-insensitivity or an inability

to infer invariants over arrays) that may lead to failure in type inference even for

leakage-free programs. In contrast, our approach is path-sensitive and requires only

the annotations that specify the property to be verified. One abstract-interpretation-
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based approach can infer possible information-flow dependencies, indicating which

variables’ values may depend on others’ [156]. This approach, like ours, does not

require annotations indicating which inputs and outputs are public or private. How-

ever, unlike our approach, it does not handle programs with procedures, arrays, or

declassification. A more recent abstract interpretation approach [16] proposes hyper-

collecting semantics, which it uses to derive an analysis for quantitative information

flow.

5.8.3 Syntax-Guided Synthesis

The presented approach for inferring information flow specifications is also related

to a wide range of guess-and-check SyGuS techniques [8, 120, 10, 72, 73, 129, 74].

Especially relevant are enumerate-and-check approaches to solve CHCs [72, 73, 74].

The template for guessing quantified invariants for arrays in Chapter 5 adapts a

previous technique [74] to the setting of reasoning about secure information flow. Such

techniques have not previously been applied to inferring or verifying information-flow

properties. The structure of information-flow properties makes them ideal targets for

grammar-based enumerative search and synthesis and motivated the work presented

in Chapter 5.
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Chapter 6

Conclusions and Future Work

I have described to apply and improve automated modular verification of programs

in order to achieve scalability by taking advantage of the syntax and structure of

properties and programs. In particular, I have demonstrated how to do this for

𝑘-safety of intraprocedural programs, where modularity stems from the ability to

decompose a verification problem into several subproblems when control-flow branches

(such as in the case when there are loops), and for interprocedural programs, where

modularity can also result from using procedure boundaries to formulate verification

subproblems. Finally, I have presented work considering information-flow verification

of interprocedural programs, which is a specific domain within the intersection of

𝑘-safety verification and interprocedural verification.

6.1 Conclusions

In both relational and non-relational settings, awareness of useful syntactic quali-

ties of properties allowed for significant improvements over previous state-of-the-art

techniques that were largely agnostic to these particular features of properties. Specif-

ically, the 𝑘-safety verifier Synonym was able to take advantage of the symmetries

of properties to handle larger examples than the Descartes tool upon which it was
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built, Clover’s use of EC lemmas allowed it to solve benchmarks containing mutual

recursion that other tools were unable to handle, and Flower was able to use gram-

mar templates to infer invariants that allowed it solve unannotated benchmarks that

other tools could not.

The awareness of the syntactic and structural features of programs can be seen

largely as serving two purposes in my work: (1) being useful for guiding the formula-

tion of verification subproblems so that solving these subproblems involves learning

or considering intermediate properties that demonstrate desired syntactic features,

or (2) being involved in determining what intermediate properties are desirable for

discharging intermediate verification problems. In other words, it is the desire to find

and consider invariants and intermediate properties with these features that motivates

the consideration of the syntax and structure of the programs.

The first purpose can be seen in each of the three kinds of verification problems

considered. In 𝑘-safety verification, synchronization aims to align matching frag-

ments of program copies, making it more likely that a simpler relational invariant can

be learned. In interprocedural program verification, verification algorithms use the

modular structure of interprocedural programs to learn invariant properties for pro-

cedures. The presented work on information-flow property verification counts both

as 𝑘-safety verification and interprocedural program verification, where synchroniza-

tion is used to align structural features of program copies and the modular structure

of interprocedural programs is used to generate verification subproblems. The goal

of such alignments is to provide opportunities for the inference of relational invari-

ants that exhibit the features expressed in the grammar: equalities of corresponding

variables across program copies, equalities of corresponding array elements across

program copies, or assumptions about the environment in which a procedure is called

(for handling declassification).
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The second purpose can also be seen in each kind of verification problem consid-

ered. The work on symmetry in Chapter 3 relied on the symmetries found in the

properties and used those to perform reductions, eliminating redundant verification

tasks, but these symmetries must apply to the composed programs. In other words,

the ideal property is one that exhibits symmetries that are also symmetries for the

corresponding programs. The algorithm used in Synonym detects when such proper-

ties arise during verification and uses them to discharge redundant verification tasks.

The formulation of EC lemmas for interprocedural program verification more directly

involves program structure since the definition of an EC lemma involves considering

the program call graph. These EC lemmas are used to discharge verification subprob-

lems that involve mutually recursive procedures. Finally, this second purpose can be

seen in the grammar templates for guessing invariants presented in Chapter 5. These

grammar templates incorporate program syntax so that the guessed invariants are

influenced by the syntactic features of the program. Flower uses these invariants

to solve per-procedure verification subproblems for information-flow properties.

This general approach, where syntactic and structural features of a program are

used to help set up verification subproblems involving desirable intermediate prop-

erties, is likely to be useful for other kinds of verification problems beyond the ones

considered in this dissertation as well. Both identifying what features are useful to

have in intermediate properties and determining how to use program structure in an

algorithm to achieve such intermediate properties are applications of human insights.

As has been seen in the work presented in this dissertation, encoding these insights

into an algorithm can help scale verification or enable verification for programs and

properties that otherwise cannot be handled well by more general automated reason-

ing techniques.
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6.2 Future Work

6.2.1 Heuristic Improvements

As mentioned in Chapter 4, several heuristics are used in Clover (note that these are

also present in Flower, since it is implemented on top of Clover). In particular,

the heuristics used to prioritize the choice of which node to process next lead to a BFS-

like search where in some cases a DFS-like search may perform better. Investigating

better heuristics for Clover’s search remains future work.

Clover and Flower also include heuristics to ensure nontrivial over-

approximate summaries are used even when the backend interpolating solver

returns an interpolant that is simply ⊤. One other avenue for improving the over-

approximate summaries in practice is using different backends to provide interpolants,

including tools like HornSpec that provide nontrivial solutions [131]. Future work

includes investigating the effect of such solvers on the performance of Clover and

Flower.

6.2.2 Symmetry-Breaking in CHC Solving

The work presented in Chapter 5 directly incorporates and builds upon the work

presented in Chapter 4, with the template-based summary inference taking place

before and within the modular verification algorithm presented in Chapter 4. The

corresponding tool Flower too was correspondingly built upon the Clover tool

described in Chapter 4. The tool Flower, however, does not benefit from the

symmetry-breaking techniques proposed in Chapter 3 as they were implemented in

a different tool. Future work includes applying the symmetry-breaking techniques

proposed in Chapter 3 to a CHC-solving setting and implementing this symmetry-

breaking in the CHC solver Flower.

134



It is likely that Flower will exhibit different benefits than Descartes did from

symmetry breaking because of the difference in the exploration of program behaviors

and form of invariants, and comparing the performance of Synonym and Flower

with symmetry-breaking would be an additional direction to explore in future work.

In particular, this future work should measure whether the exploration and invariants

used in Flower create more opportunities to apply symmetry-breaking.

Descartes and Synonym are based on Hoare logic and employ a forward explo-

ration strategy; furthermore, they perform alignment dynamically during exploration

and focus on aligning loops across program copies, but these loops may not cor-

respond to copies of the same loop. Meanwhile, Flower’s exploration, like most

CHC solvers, is neither strictly forward nor backward, and, more crucially, it relies

on a MPP construction, which guarantees that corresponding procedures and loops

across program copies – and only corresponding ones – have the opportunity to be

aligned, regardless of intermediate invariants. This alignment of corresponding pro-

gram structures across copies may create more opportunities for symmetry-breaking

to be applied.

The difference in the form of invariants that Flower infers may more critically

impact the application of symmetry-breaking. Most of the intermediate invariants

inferred by Descartes and Synonym are the result of a strongest postcondition

computation, with the only exception being that loop invariants are inferred using

SyGuS with a simple grammar template for inferring relational properties. Mean-

while, the majority of intermediate invariants inferred by Flower are generated

by grammar templates for inferring relational properties. Because these grammar

templates are designed to exhibit symmetries, they may lead to more symmetries

in invariants than would be present in Descartes or Synonym, presenting more

opportunities to identify and eliminate redundant verification subtasks.
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6.2.3 Heap Properties

As touched upon briefly in Sect. 3.5, CHC-based verifiers have not been able to

encode heap properties easily; most CHC encodings of programs that have heap

data structures either represent them by using the theory of arrays to represent heap

contents or transform the heap data structures away using invariants [68]. More

recently, there has been a proposal exploring the possibility of extending the SMT-LIB

format for CHCs with a theory of heaps, allowing for CHC-based verifiers to operate

on heap structures directly [68]. As can be seen in the work on relational program

logics that incorporate aspects of separation logic to reason about the heap [152,

21], dealing with heaps in a relational setting is nontrivial, and aligning heap data

structures for synchrony is typically a manual effort, since there exist many possible

alignments.

Relevant to the automatic handling of heaps are promising SyGuS-based methods

for inferring invariants about algebraic datatypes [154, 71], including recent work

in a relational setting for proving equivalence [71]. Generalizing these insights and

applying them to future work in CHC-based 𝑘-safety verification will include trying

to automate finding heap object alignments using heuristics, which, in a similar vein

to the approaches presented in this dissertation, will include exploiting structural

properties of the heap representation at intermediate points during CHC solving.
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[29] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin.
Probabilistic relational reasoning for differential privacy. In John Field and
Michael Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22-28, 2012, pages 97–110. ACM, 2012.

[30] Nels E. Beckman and Aditya V. Nori. Probabilistic, modular and scalable
inference of typestate specifications. In Mary W. Hall and David A. Padua,
editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011, pages 211–221. ACM, 2011.

[31] Nick Benton. Simple relational correctness proofs for static analyses and pro-
gram transformations. In Neil D. Jones and Xavier Leroy, editors, Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages 14–25.
ACM, 2004.

[32] Lennart Beringer. Relational decomposition. In Marko C. J. D. van Eekelen,
Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive The-
orem Proving - Second International Conference, ITP 2011, Berg en Dal, The

140



Netherlands, August 22-25, 2011. Proceedings, volume 6898 of Lecture Notes in
Computer Science, pages 39–54. Springer, 2011.

[33] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Ry-
balchenko. Invariant synthesis for combined theories. In Byron Cook and
Andreas Podelski, editors, Verification, Model Checking, and Abstract Inter-
pretation, 8th International Conference, VMCAI 2007, Nice, France, January
14-16, 2007, Proceedings, volume 4349 of Lecture Notes in Computer Science,
pages 378–394. Springer, 2007.

[34] Nikolaj Bjørner and Mikolás Janota. Playing with quantified satisfaction. In
Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov, edi-
tors, 20th International Conferences on Logic for Programming, Artificial Intel-
ligence and Reasoning - Short Presentations, LPAR 2015, Suva, Fiji, November
24-28, 2015, volume 35 of EPiC Series in Computing, pages 15–27. EasyChair,
2015.

[35] Sam Blackshear and Shuvendu K. Lahiri. Almost-correct specifications: a mod-
ular semantic framework for assigning confidence to warnings. In Hans-Juergen
Boehm and Cormac Flanagan, editors, ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013, pages 209–218. ACM, 2013.

[36] Aaron R. Bradley. SAT-based model checking without unrolling. In Ranjit
Jhala and David A. Schmidt, editors, Verification, Model Checking, and Ab-
stract Interpretation - 12th International Conference, VMCAI 2011, Austin,
TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes in
Computer Science, pages 70–87. Springer, 2011.

[37] Aaron R Bradley and Zohar Manna. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer Science & Business Me-
dia, 2007.

[38] Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay. Higher-order con-
strained horn clauses for verification. Proceedings of the ACM on Programming
Languages, 2(POPL):11:1–11:28, 2018.

[39] Adrien Champion, Naoki Kobayashi, and Ryosuke Sato. HoIce: An ice-based
non-linear horn clause solver. In Sukyoung Ryu, editor, Programming Languages
and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand,
December 2-6, 2018, Proceedings, volume 11275 of Lecture Notes in Computer
Science, pages 146–156. Springer, 2018.

[40] CHC-Comp. https://chc-comp.github.io, 2021. Accessed: 2021-08-24.

[41] Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vulnera-
bilities using quantitative cartesian hoare logic. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017

141

https://chc-comp.github.io


ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 875–890. ACM,
2017.

[42] Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. Rela-
tional verification using reinforcement learning. Proc. ACM Program. Lang.,
3(OOPSLA):141:1–141:30, 2019.

[43] Yu-Fang Chen, Chiao Hsieh, Ming-Hsien Tsai, Bow-Yaw Wang, and Farn
Wang. Verifying recursive programs using intraprocedural analyzers. In Markus
Müller-Olm and Helmut Seidl, editors, Static Analysis - 21st International Sym-
posium, SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings,
volume 8723 of Lecture Notes in Computer Science, pages 118–133. Springer,
2014.

[44] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. Seman-
tic program alignment for equivalence checking. In Kathryn S. McKinley and
Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019, Phoenix,
AZ, USA, June 22-26, 2019, pages 1027–1040. ACM, 2019.

[45] Alessandro Cimatti and Alberto Griggio. Software model checking via IC3. In
P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, volume 7358 of Lecture Notes in Computer Science, pages 277–293.
Springer, 2012.

[46] Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. Exploiting symmetry
in temporal logic model checking. In Costas Courcoubetis, editor, Computer
Aided Verification, 5th International Conference, CAV ’93, Elounda, Greece,
June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in Computer
Science, pages 450–462. Springer, 1993.

[47] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emerson
and A. Prasad Sistla, editors, Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, vol-
ume 1855 of Lecture Notes in Computer Science, pages 154–169. Springer, 2000.

[48] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Com-
puter Security, 18(6):1157–1210, 2010.

[49] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony I. T. Rowstron, Lidong
Zhou, Lintao Zhang, and Paul Barham. Vigilante: end-to-end containment of
internet worms. In Andrew Herbert and Kenneth P. Birman, editors, Proceed-
ings of the 20th ACM Symposium on Operating Systems Principles 2005, SOSP
2005, Brighton, UK, October 23-26, 2005, pages 133–147. ACM, 2005.

142



[50] David Costanzo and Zhong Shao. A separation logic for enforcing declarative
information flow control policies. In Mart́ın Abadi and Steve Kremer, editors,
Principles of Security and Trust - Third International Conference, POST 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume
8414 of Lecture Notes in Computer Science, pages 179–198. Springer, 2014.

[51] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors,
Conference Record of the Fourth ACM Symposium on Principles of Program-
ming Languages, Los Angeles, California, USA, January 1977, pages 238–252.
ACM, 1977.

[52] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo.
Automatic inference of necessary preconditions. In Roberto Giacobazzi, Josh
Berdine, and Isabella Mastroeni, editors, Verification, Model Checking, and
Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome,
Italy, January 20-22, 2013. Proceedings, volume 7737 of Lecture Notes in Com-
puter Science, pages 128–148. Springer, 2013.

[53] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack pre-
vention orthogonal to memory model. In 37th Annual International Symposium
on Microarchitecture (MICRO-37 2004), 4-8 December 2004, Portland, OR,
USA, pages 221–232. IEEE Computer Society, 2004.

[54] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha
Roy. Symmetry-breaking predicates for search problems. In Luigia Carlucci
Aiello, Jon Doyle, and Stuart C. Shapiro, editors, Proceedings of the Fifth In-
ternational Conference on Principles of Knowledge Representation and Rea-
soning (KR’96), Cambridge, Massachusetts, USA, November 5-8, 1996, pages
148–159. Morgan Kaufmann, 1996.

[55] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.
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Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 20th International Conference, TACAS 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, volume
8413 of Lecture Notes in Computer Science, pages 568–574. Springer, 2014.

[59] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proi-
etti. Relational verification through horn clause transformation. In Xavier
Rival, editor, Static Analysis - 23rd International Symposium, SAS 2016, Ed-
inburgh, UK, September 8-10, 2016, Proceedings, volume 9837 of Lecture Notes
in Computer Science, pages 147–169. Springer, 2016.

[60] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proi-
etti. Predicate pairing for program verification. Theory and Practice of Logic
Programs, 18(2):126–166, 2018.

[61] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Pro-
ceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[62] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[63] Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz, and
Andreas Podelski. Ultimate TreeAutomizer (CHC-COMP tool description). In
Emanuele De Angelis, Grigory Fedyukovich, Nikos Tzevelekos, and Mattias Ul-
brich, editors, Proceedings of the Sixth Workshop on Horn Clauses for Verifica-
tion and Synthesis and Third Workshop on Program Equivalence and Relational
Reasoning, HCVS/PERR@ETAPS 2019, Prague, Czech Republic, 6-7th April
2019, volume 296 of EPTCS, pages 42–47, 2019.

[64] Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, and Thomas Wahl.
Symmetry-aware predicate abstraction for shared-variable concurrent programs.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verifi-
cation - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science,
pages 356–371. Springer, 2011.

144



[65] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient implementation
of property directed reachability. In Per Bjesse and Anna Slobodová, editors,
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[94] Douglas R Hofstadter et al. Gödel, Escher, Bach: an eternal golden braid,
volume 20. Basic books New York, 1979.
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