
Research Statement Lauren Pick

Software systems carry out important tasks and make important decisions. To do this,
these systems often interface with others: simply logging into a bank account involves in-
teractions between network protocols, distributed systems, and encryption schemes. Given
their critical role in society, it is important that we understand how such systems behave,
how they interact, and what behaviors emerge from their composition.

Formal specifications can help address the challenge of understanding these systems.
These specifications are precise, high-level descriptions of system behaviors, and they can
be composed to understand the behaviors that emerge from compositions of the systems
they describe. To aid in understanding large and complex software systems, I
develop automated techniques both for synthesizing formal specifications and
for formally verifying that such specifications are correct for given systems.
There is an interplay between verification and synthesis, where synthesis techniques may
rely on verification to ensure correctness of synthesized results, and verification techniques
may generate sub-problems that can be solved by synthesis.

Unfortunately, software systems are large and their interactions are complex, making
it difficult to derive formal specifications. This is true even for systems composed solely
of manually-constructed components such as distributed systems, where concurrency leads
to many possible (and sometimes unintended) behaviors. A further challenge arises when
considering machine learning (ML) systems, whose behaviors, rather than being determined
by a human programmer, are learned from data. While these systems’ effectiveness has led
to their widespread adoption, they are challenging to reason about – they are often massive,
with modern models having billions of learned parameters.

While synthesis and verification provide a promising way of understanding software sys-
tems and ensuring their correctness, techniques often have scalability or expressivity-related
limitations that prevent their application to real software systems. I have tackled these
limitations by exploiting the structure of programs and properties to avoid redundant work
in verification and to learn useful specifications, which has had applications in ensuring
secure information flow [3–5] and in verifying distributed systems [2], which I sum-
marize in more detail below. Going forward, I will continue working toward the broader goal
of automating reasoning about large and complex software systems. With this aim in mind,
in the near future, I plan to develop new synthesis and verification techniques for
distributed applications and ML systems.

Security Properties

We rely on software systems to handle sensitive personal data. As unintended leakage
of this information to unauthorized parties can be disastrous, we would like to prove that
these systems exhibit certain security and privacy properties. These properties can be for-
mulated as relational ones that relate k executions of a single program; in particular, secure
information flow properties, which formalize the notion that high-security (private) inputs
do not leak information to low-security (public) outputs, are formulated as 2-safety proper-
ties – properties over two executions – of the underlying system. Inferring information-flow
specifications can help us reason about the overall security of a system and compositions of
systems. My research in this area has improved the scalability k-safety property verification



and provided a way to infer information-flow specifications of procedures automatically.

Papers: CAV 2018 [3], FMCAD 2020 [4], VMCAI 2021 [5]
Key Ideas: (1) Developing algorithms to exploit synchrony and symmetry to avoid
expensive or redundant work when doing relational verification. (2) Using template- and
property-based synthesis to help automate modular secure information flow verification.

Synchrony and Symmetry for Scaling k-safety Verification [3] Verification of k-
safety properties involves the challenge of having to reason about k executions of a single
program. A key idea used to address this challenge is that of synchrony, where the aim is to
explore behaviors of corresponding parts of the executions in lockstep as much as possible.
I leveraged the structure of k-safety properties to propose a novel algorithm to increase
synchrony for loops. Use of this algorithm helps execute more loops in lockstep, leading to
fewer invocations of expensive invariant synthesis procedures during verification.

∀x1, x2, y1, y2.x1 = x2 ⇒ f(x1, y1) = f(x2, y2)

Figure 1: A secure information flow (noninter-
ference) property. Note the symmetry with re-
spect to variable indices.

I also noticed that k-safety properties
are often commutative for properties of in-
terest, leading many verification subtasks
to be symmetric with respect to which exe-
cution of the program variables come from.
This led me to develop an algorithm to
prune these redundant subtasks: I adapted
previous work for breaking symmetries of propositional logic formulas to discover symmetries
in k-safety properties expressed in first-order logic. I showed experimentally that these tech-
niques were very effective at reducing the runtime of an underlying state-of-the-art verifier.

Synthesis for Security of Interprocedural Programs [4,5] Verification of secure in-
formation flow properties in a scalable, procedure-modular way depends on having relational
specifications expressing information-flow properties. In my FMCAD paper, I designed new
grammar templates based on the structure of these properties, which allows a syntax-guided
synthesis technique to learn these invariants automatically, eliminating the need for the user
to provide them, as previously required. These invariants are learned in an environment-
agnostic way, so they may be irrelevant to the top-level property. This observation led me
to propose property-directed invariants in my VMCAI paper. These are generated from a
grammar template that uses syntactic features of the calling environment. Invariants in-
ferred using property-directed templates are key to handling declassification and loops, both
of which are required to prove useful security properties of real-world systems. The use of
these proposed grammar templates in a specification inference tool allowed it to solve bench-
marks for secure information flow that prior state-of-the-art tools could not, including ones
based on the industrial TLS implementation s2n.

Distributed Systems and Databases

Distributed systems underlie many applications, with distributed databases being a key
application on top of which many others are built. Given their importance, we would like
to be able to understand and prove properties about (1) the underlying distributed systems
and (2) the distributed databases themselves.



Papers: PLDI 2023 [2], Under Submission
Key Ideas: (1) Exploiting redundant computations in transitions to scale model check-
ing of distributed systems. (2) Formulating observational correctness for black-box dis-
tributed database systems and a scalable method for checking it.

Identifying Redundancies for Distributed Systems Verification [2] Distributed
systems consist of many nodes that operate concurrently and are difficult to reason about
because of their large number of possible behaviors; however, most systems involve several
nodes that perform some of the same computations in response to similar messages. To elim-
inate redundancy, in my PLDI paper I proposed composite value summaries, a decomposed
representation of system states that a model checker can use to identify redundancies when
computing the next frontier of states. The model checker can then avoid performing these
redundant computations, even when they occur when computing transitions from different
system states. The implementation Psym outperforms the state-of-the-art model checker
TLC on a set of open source TLA + benchmarks of common distributed protocols and scales
to verify industrial protocols, including four protocols used at Amazon Web Services. It has
seen industrial adoption and is now part of the P toolchain at Amazon Web Services.

Correctness of Distributed Databases [Under Submission] Clients of distributed
transactional database management systems (DBMSs) rely on them to be correct, i.e., to pro-
vide semantically correct implementations of database operations and meet isolation guaran-
tees, which specify the visibility of writes of concurrent transactions to each other. Checking
correctness of a black-box DBMS for weaker levels of isolation presents a scalability challenge
because many possible values may be read by transactions, and all such possibilities need to
be reasoned about. I formulated a notion of observational correctness for DBMSs that cap-
tures both semantic correctness and isolation guarantees and a scalable method for checking
it that relies on novel symbolic encodings of semantic correctness and isolation guarantees.
These encodings represent nondeterministic reads and writes symbolically, and the check-
ing method resolves this nondeterminism via Satisfiability Modulo Theories (SMT) solving.
The encodings also allow for inference of specifications of database states, which are useful
for debugging DBMS implementations. The checker implementation has been used inside
Amazon Web Services to detect two bugs in internal DBMSs currently under development.

Future Directions

Synthesis for Relaxed Distributed Data Structures

There has been much work proposing relaxed concurrent data structures, which pro-
vide weaker guarantees in exchange for better performance. For example, a dequeue from
a relaxed concurrent priority queue may return any one of the k highest-priority elements,
reducing contention for the highest-priority element. Client applications can use these relax-
ations to gain performance benefits when overall functional correctness is unaffected and the
drop in the result quality is acceptable. If developers want to use relaxed data structures,
however, they must face the challenge of assessing whether a particular relaxation is suit-
able for their application. I plan to automate this reasoning by synthesizing replacements
of data structures by relaxed variants: given hard and soft constraints capturing require-
ments for client application correctness, result quality, and desired performance, synthesis



should produce a correct relaxation that achieves the desired trade-off between result quality
and performance, provided one exists. Developers can then use synthesized relaxations to
improve performance of their applications without having to reason about their suitability.

The synthesis techniques applicable to this problem overlap heavily with those used in
work I have been involved in for minimizing noise during quantum compilation [1,7]. In this
work, scalability issues in synthesis were addressed by leveraging the structure of quantum
circuits. For large client applications, scalability will similarly be an issue. In this setting, it
can be addressed by using a modular approach where specifications are inferred for modules
of client programs. As these specifications constitute client-side requirements on relaxations,
they may also help inform the development of new relaxed data structures.

Program Synthesis for Understanding Transformer Models

ML components, and especially the transformer models that underlie large language mod-
els (LLMs), despite being in wide use, are not well-understood. Experimental frameworks
can help understand some behaviors of ML systems and their interactions with other ML
or non-ML components [6], but for more rigorous and automated reasoning about ML sys-
tems, we would like to infer compositional specifications that describe the behavior of ML
components. The structure of the residual blocks that make up transformer layers suggests
specification inference using traditional synthesis techniques may be a promising method for
achieving interpretability. Performing this specification inference requires designing both (1)
the space of specifications to infer and (2) the inference algorithm itself.

Specification format. Existing work in understanding transformers has largely addressed
problem (1) in two ways. One views transformer models as computational graphs and aims to
find circuits – subgraphs that can be viewed as modules providing a particular functionality.
While circuits can be low-level enough to capture all transformer behaviors, constructing
them can be difficult, and circuits themselves may be difficult to understand. Orthogonal
work proposes RASP, a domain-specific language with constructs based on the structure
of the transformer architecture. RASP programs provide succinct and easier-to-understand
descriptions of transformer behavior, suggesting they would be easier to synthesize and reason
about, but they are unable to capture certain low-level behaviors of transformers such as
superposition. I plan to combine and extend these approaches to strike the right balance in
trading off between expressivity and feasibility of automated inference.

Specification inference. Problem (2) meanwhile remains largely unaddressed in existing
work. Specifications for arbitrary transformer models are typically provided by a human in
the same way that a human may write candidate invariants or procedure specifications for
loops or modular programs in a typical software verification setting. While there has been
some work on circuit-based mechanistic interpretability that can be applied to transformers
as well as other models, automation only goes as far as identifying subcomponents of a model
that satisfy the specification (in the form of a computation graph). Similarly, for arbitrary
transformers, using RASP-like specifications would require humans to provide programs
describing the behavior that they would like to check an existing model against. I plan
to apply insights from specification inference in other domains to automate this aspect
of achieving interpretability for general transformers. For example, traditional program
synthesis techniques seem well-suited to synthesize RASP or RASP-like programs.



References

[1] A. Molavi, A. Xu, M. Diges, L. Pick, S. S. Tannu, and A. Albarghouthi. Qubit mapping
and routing via MaxSAT. In 55th IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2022, Chicago, IL, USA, October 1-5, 2022, pages 1078–1091. IEEE,
2022.

[2] L. Pick, A. Desai, and A. Gupta. Psym: Efficient symbolic exploration of distributed
systems. Proc. ACM Program. Lang., 7(PLDI):660–685, 2023.

[3] L. Pick, G. Fedyukovich, and A. Gupta. Exploiting synchrony and symmetry in relational
verification. In CAV (1), volume 10981 of Lecture Notes in Computer Science, pages 164–
182. Springer, 2018.

[4] L. Pick, G. Fedyukovich, and A. Gupta. Automating modular verification of secure
information flow. In FMCAD, pages 158–168. IEEE, 2020.

[5] L. Pick, G. Fedyukovich, and A. Gupta. Unbounded procedure summaries from bounded
environments. In VMCAI, volume 12597 of Lecture Notes in Computer Science, pages
291–324. Springer, 2021.

[6] N. Roberts, X. Li, T. Huang, D. Adila, S. Schoenberg, C. Liu, L. Pick, H. Ma, A. Al-
barghouthi, and F. Sala. Autows-bench-101: Benchmarking automated weak supervision
with 100 labels. In NeurIPS, 2022.

[7] A. Xu, A. Molavi, L. Pick, S. Tannu, and A. Albarghouthi. Synthesizing quantum-circuit
optimizers. Proc. ACM Program. Lang., 7(PLDI):835–859, 2023.


