
Psym: Efficient Symbolic Exploration of Distributed Systems
LAUREN PICK, University of California, Berkeley and University of Wisconsin-Madison, USA
ANKUSH DESAI, Amazon Web Services, USA
AARTI GUPTA, Princeton University, USA

Verification of distributed systems using systematic exploration is daunting because of the many possible
interleavings of messages and failures. When faced with this scalability challenge, existing approaches have
traditionally mitigated state space explosion by avoiding exploration of redundant states (e.g., via state hashing)
and redundant interleavings of transitions (e.g., via partial-order reductions). In this paper, we present an
efficient symbolic exploration method that not only avoids redundancies in states and interleavings, but
additionally avoids redundant computations that are performed during updates to states on transitions. Our
symbolic explorer leverages a novel, fine-grained, canonical representation of distributed system configurations
(states) to identify opportunities for avoiding such redundancies on-the-fly. The explorer also includes an
interface that is compatible with abstractions for state-space reduction and with partial-order and other
reductions for avoiding redundant interleavings. We implement our approach in the tool Psym and empirically
demonstrate that it outperforms a state-of-the-art exploration tool, can successfully verify many common
distributed protocols, and can scale to multiple real-world industrial case studies across Amazon.

CCS Concepts: • Computing methodologies→ Distributed programming languages; • Software and

its engineering→ Formal software verification.

Additional Key Words and Phrases: distributed systems, systematic exploration, binary decision diagrams

ACM Reference Format:

Lauren Pick, Ankush Desai, and Aarti Gupta. 2023. Psym: Efficient Symbolic Exploration of Distributed Systems.
1, 1 (June 2023), 43 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Verification of distributed systems is challenging because of the need to reason about all possible
behaviors resulting from a myriad interleavings of messages and failures. Existing approaches fall
into two broad categories: interactive theorem-proving with specialized logics (e.g., [Jung et al.
2015; Sergey et al. 2018]), and automatic systematic exploration (e.g., [Desai et al. 2013a; Holzmann
1997; Lamport 2002]). Researchers have used theorem provers to construct correctness proofs
for complex distributed systems [Hawblitzel et al. 2015; Padon et al. 2016; Wilcox et al. 2015].
Although these proofs of correctness are invaluable, theyrequire significant manual effort. In this
paper, we are interested in mostly-automated systematic-exploration-based approaches that need
less expert guidance. However, in practice, such approaches can achieve correctness guarantees
only for small bounded instances of systems because of the state-space explosion problem, which
results in poor scalability with increasing system complexity. Hence, there is a need for more

Authors’ addresses: Lauren Pick, pick@berkeley.edu, University of California, Berkeley and University of Wisconsin-
Madison, USA; Ankush Desai, ankushpd@amazon.com, Amazon Web Services, USA; Aarti Gupta, aartig@cs.princeton.edu,
Princeton University, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-1605-5383
HTTPS://ORCID.ORG/0000-0001-9006-0100
HTTPS://ORCID.ORG/0000-0001-6676-9400
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0003-1605-5383
https://orcid.org/0000-0001-9006-0100
https://orcid.org/0000-0001-6676-9400
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Lauren Pick, Ankush Desai, and Aarti Gupta

efficient techniques that can push the limits on the complexity of systems that can be verified using
systematic exploration.
Explicit-state model-checkers (stateful explorers) (e.g., TLC [Yu et al. 1999], Zing [Andrews

et al. 2004], and SPIN [Holzmann 1997]) have been widely successful in industry and academia for
verification of distributed systems [Newcombe 2014; TLA+ 2023]. Most stateful explorers address the
state explosion problem by using state caching (hashing) to avoid re-exploring already visited states,
thereby avoiding redundant computation. Explorers also use partial-order reduction (POR) [Clarke
et al. 2001; Peled 2018] and its dynamic variants [Abdulla et al. 2014; Flanagan and Godefroid 2005;
Nguyen et al. 2018; Tasharofi et al. 2012] to avoid exploring interleavings that are redundant due to
independent transitions.

In distributed systems, transitions operate only on the local state of a process (no shared memory),
and it is common to have multiple instances of the same process in the system that execute the
same code but have different local state (e.g., replicas in a storage system [Chang and Roberts
1979], proposer and acceptors in Paxos [Lamport 2001]). As a result, treating distributed system
configurations and transitions monolithically, as is done in existing techniques, may still lead to
redundant computations in updates due to transitions that “overlap,” i.e., share computations that
update the same (or partially same) local state (defined in §4.1). We are thus motivated to improve
upon existing techniques and present an efficient symbolic explorer that recognizes and exploits
redundancies not only in configurations (states) and interleavings, but also in the computations in

overlapping transitions.
Our Approach. To ground our contributions in a real-world setting, we consider distributed
systems modeled with P [Desai et al. 2013a, 2018], a state-machine-based programming language
for modeling and specifying distributed systems. P is being used across industry and academia for
analysis of complex distributed systems [Desai 2022; GitHub 2021]; e.g., to reason about Amazon
S3’s core distributed protocols [GitHub 2021] and the USB device driver stack that shipped with
Microsoft Windows 8 [Desai et al. 2013a]. Teams across Amazon are using P to reason about the
core distributed protocols driving their services. We present our approach as a symbolic explorer
for P programs, though our ideas apply to systematic exploration of distributed systems in general.

As a first step for efficient systematic exploration of P programs, we adapt macro-step semantics
for actor systems [Agha et al. 1997], on top of which we design a novel symbolic stateful explorer.
For our explorer to identify redundancies in transitions on-the-fly, we propose a novel, fine-grained
symbolic representation of sets of configurations. Our symbolic representation is inspired by value

summaries (sets of guard-value pairs) used in MultiSE [Sen et al. 2015], a systematic exploration
method for sequential programs. We adapt value summaries to distributed systems by introducing
Schedule-Control-Input guards (SCI Guards) to capture symbolic scheduling choices in addition
to control and input nondeterminism. We also propose composite value summaries (for tuples,
lists, maps, etc.) and symbolic operations on them to get fine-grained representations, which we
show are canonical. Canonicity helps our explorer identify redundant configurations as well as
overlapping transitions.

We lift the macro-step P semantics to operate over these symbolic representations, where a single
symbolic transition in the lifted semantics can capturemultiple overlapping transitions in the original
semantics, avoiding redundant computations in these transitions. We design our explorer so that it
includes an interface compatible with abstractions for state-space reduction and with partial-order
and other reductions for avoiding redundant interleavings. To avoid redundant interleavings, our
explorer supports a persistent-set based partial-order reduction [Clarke et al. 2001; Peled 2018] that
we adapt to P. We provide theoretical guarantees for the soundness and efficiency of our explorer.
Psym.We implemented our approach in Psym, a symbolic explorer for P programs. We compare
Psym with the state-of-the art stateful explorer TLC (model checker for TLA+ [Lamport 2002;

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 3

Yu et al. 1999]) and show that Psym outperforms TLC on many open source distributed system
benchmarks, finishing verificationwhen TLC times out on two benchmarks, and achieving a runtime
improvement of 2.5X over TLC on average (geometric mean) on the remaining benchmarks. Psym
can also successfully verify common distributed protocols and challenging industrial case-studies
of four complex real-world distributed protocols used at Amazon Web Services (AWS) where other
verification tools failed.
Contributions. In summary, we make the following main contributions:
- We present a novel, fine-grained symbolic representation of configurations in a distributed
system (§4) that helps avoid redundancies during exploration. Inspired by MultiSE, we extend
canonical value summaries to include schedule nondeterminism and represent common composite

data structures (e.g., tuples, lists, maps) in a fine-grained, decomposed manner. To the best of
our knowledge, our work is the first to use value summaries for distributed systems. These
representations are not specific to P and could be used by other distributed systems frameworks.

- We propose a new symbolic stateful explorer for P programs (§5), where the macro-step seman-
tics (§3) is lifted to leverage our novel value summaries for efficient exploration of reachable
configurations while avoiding redundancies in configurations, interleavings, and overlapping
transitions. Additionally, it can use abstractions (§6.1) to handle infinite-state systems.

- We implemented our ideas in a prototype tool Psym that includes an extensible filter interface
(§6.2) for integrating POR and other reductions with our symbolic explorer.

- We demonstrate Psym’s efficacy on real-world benchmarks, including industrial scale distributed
protocols (§8).

2 MOTIVATING EXAMPLE AND KEY IDEAS
We first introduce P and then highlight the key ideas of our approach on a motivating example.

2.1 P Language
P is a state-machine-based programming language for modeling and specifying complex distributed
systems. P was first used to implement and validate the USB device driver stack that ships with
Microsoft Windows 8 and Windows Phone [Desai et al. 2013a] and is used extensively in Amazon
(AWS) for formal modeling and analysis of complex distributed systems such as the core distributed
protocols involved in Amazon S3’s strong consistency launch [Desai 2022; Desai et al. 2021; GitHub
2021]. P currently leverages randomized stateless exploration [Desai et al. 2015; Microsoft Coyote
2022] to find critical bugs in industrial-scale distributed protocols. Randomized search (run on a
distributed cluster) is highly effective in finding low-probability bugs but fails to provide correctness
guarantees. Hence, there is a need for a verification backend for P that can handle industrial-scale
systems.

(a) Server State Machine (b) Worker State Machine (c) Registry State Machine

Fig. 1. An example P program (adapted from the TransDPOR paper [Tasharofi et al. 2012]).

, Vol. 1, No. 1, Article . Publication date: June 2023.

4 Lauren Pick, Ankush Desai, and Aarti Gupta

2.2 Motivating Example in P
A P program is a collection of concurrently executing state machines that communicate with each
other by sending messages (i.e., events and payloads) asynchronously. (The underlying model of
computation is similar to actors [Agha 1986].) Fig. 1 presents a simple P program adapted from
an example in the TransDPOR work [Tasharofi et al. 2012]. It consists of three types of state
machines: Server (line 1), Worker (line 21), and Registry (line 36). The Server creates a set of
Workers and sends them work items to be processed, and the Registry maintains the set of all
workers in the system. State machines in P communicate by sending events with payloads. Line
19 declares the eWorkItem event that has an associated payload of machine reference type. Each
machine has a start state (e.g., line 3), where it starts execution after being created. Each state has
an entry handler that is executed upon entering that state. The entry handler for the Init state
of Server creates one Registry machine (line 6) and three Worker machines (line 9), and then
sends each Worker a work item to be processed (line 11) along with a reference to the Registry
machine. Each machine can also have an associated set of local variables (e.g., Registry has a
local variable workerIds). After executing an entry procedure, a machine blocks to receive an
event. On receiving an event, the event’s handler is executed, transitioning the system from one
configuration (global state) to another. If there are no messages in its buffer, a machine blocks until
a message is received. For example, the Registry machine, after entering the Init state, blocks to
receive an event. On receiving the eRegisterWorker event, it executes the corresponding event
handler (line 41) that adds the id in the payload to the local set. The Server, Registry, and three
Worker machines execute concurrently, asynchronously sending messages to each other. In our
example, the program’s initial configuration is one in which one Server instance has been created.

2.3 Systematic Exploration: Baseline Macro-step Semantics and POR for P
As a first step for efficient systematic exploration of P programs, we adaptmacro-step semantics for P
(§3). Macro-step semantics has been demonstrated to drastically reduce the number of interleavings
for sound verification in actor systems [Sen and Agha 2006a]. The basic idea is to treat transitions
starting from (and including) a receive of a message at an actor, up until (but not including) the
next receive of a message at that actor, as a single atomic step. Fig. 2 shows the execution tree for
the motivating example under macro-step semantics. Each node denotes a configuration (i.e., a
global state) of the program, and each branch corresponds to an event received by a machine in the
system. (For simplicity of exposition, we omit branches corresponding to dynamic machine creation
though we handle this in Psym.) We have labeled the receives of each event (see lines 28 and 40
in Fig. 1): w0, w1, w2 represent the receive of eWorkItem events at the Worker machine instances
with ids 0, 1, 2, respectively. Similarly, r0, r1, r2 represent the receive of eRegisterWorker at the
Registry machine instance with payloads 0, 1, 2, respectively.
A naive systematic explorer would explore the entire execution tree shown in Fig. 2, which is

already based on macro-step semantics. We improve upon this by applying a persistent-set-based
POR technique for P programs called Pred (§6.2). When applying Pred to our example, the parts
in red are found to be redundant and not explored. For real-world distributed systems, even with
POR, there remain redundancies during exploration that present a challenge for scalability.

2.4 Symbolic Stateful Exploration Using Value Summaries
Popular explicit-state model checkers (e.g., SPIN [Holzmann 1997], TLC [Yu et al. 1999]) leverage
state caching to avoid exploring revisited states, along with applying POR to avoid exploring
redundant interleavings. In Fig. 2, all blue subtrees need not be explored if state caching is used. For
example, 𝑐2 is the same configuration as 𝑐1 andwill not be explored if 𝑐1 is visited first. However, such
approaches will separately compute the orange transitions in Fig. 2. Because these transitions arise

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 5

Fig. 2. Full execution tree for the example in Fig. 1, with the reductions due to POR shown in red. For the

remaining executions, our symbolic explorer avoids the redundant work shown in blue and orange.

from two different configurations, traditional explicit-state explorers will perform the computations
separately for each configuration. In this work, we aim to eliminate such redundant computations.
Symbolic State Exploration.Our approach is based on symbolic representations of configurations.
Similar to well-known symbolic exploration algorithms [Chaki and Gurfinkel 2018], we compute
a set of frontier configurations starting from an initial configuration, where each symbolic step
considers possiblymultiple transitions from the frontier set to compute the set of next configurations.
The novelty in our work is in our new symbolic representations of configurations of distributed systems

(§4) and in our explorer’s ability to avoid redundant computations in overlapping transitions (§4.1, §5).
Putting It All Together. The blue and orange parts of Fig. 2 show the additional work saved by
using our symbolic stateful exploration on top of using macro-step semantics and POR. To the best
of our knowledge, our work is the first to target redundancies in overlapping transitions, and the
first to use value summaries for distributed systems exploration. Because distributed systems often
involve having several instances of processes that exhibit the same or similar behaviors, we expect
a high number of transitions to have shared behaviors that we can handle efficiently.
Beyond Systematic Exploration. The ability to perform scalable stateful exploration is a useful
utility. Beyond systematic exploration, it also allows discovery of invariants through computation
of fixed points (§5.4) and the use of abstractions (§6.1). Discovering invariants on small instances of
distributed protocols is a crucial component in some recent approaches such as I4 [Ma et al. 2019]
and DistAI [Yao et al. 2021] that generalize results from small instances to large or arbitrary-sized
instances. Our symbolic explorer could be integrated with such techniques in future work.

3 ADAPTING MACRO-STEP SEMANTICS FOR P
We now describe an adaptation of macro-step semantics for P, which provides a baseline for our
symbolic explorer. This semantics treats transitions starting from and including a receive of a
message at a state machine up until but not including the next receive of a message at that machine
as a single atomic step, i.e., only receives of messages at different machines are interleaved. As in
actor systems [Agha et al. 1997], the interleaving semantics is equivalent to its macro-step semantics.
All executions of a P program under interleaving semantics (as seen in prior work [Desai et al. 2014,
2013a, 2018, 2015]) also have a Mazurkiewicz-equivalent execution in the macro-step semantics.

3.1 Notation for P Semantics
Machine. Let A represent the set of names of all machine types. Let I represent the set of all the
machine identifiers referencing dynamic instances of machine types inA. Let S𝑖𝑑 represent the set
of local states for a machine with reference identifier 𝑖𝑑 ∈ I.
Message. Let E be the set of names of events andV be the set of all possible payload values that
may accompany any event. LetM represent the set of all possible messages. Each message is a
tuple (𝑠𝑟𝑐, 𝑒𝑣, 𝑣, 𝑡𝑔𝑡,𝑚𝑖𝑑) ∈ (I × E ×V × I ×N) where 𝑠𝑟𝑐 is the source or sender of the message,
𝑒𝑣 is the event being sent, 𝑣 is the associated payload value with the event, 𝑡𝑔𝑡 is the target or

, Vol. 1, No. 1, Article . Publication date: June 2023.

6 Lauren Pick, Ankush Desai, and Aarti Gupta

Schedule Step
enabled(𝑚,𝑐) (c1) 𝑐′′ = (𝐿𝑐 , 𝐵𝑐 \ {𝑚}, 𝑆𝑂𝑐) (c2) 𝐻 [𝐿𝑐 [𝑚.𝑡𝑔𝑡],𝑚.ev] = ℎ (c3) 𝑚.𝑡𝑔𝑡 ⊢ (ℎ (𝑚), 𝑐′′) →∗ (skip, 𝑐′) (c4)

𝐻 ⊢ 𝑐 𝑚
==⇒ 𝑐′′

Seqence
𝑖𝑑 ⊢ (𝑆0, 𝑐) →∗ (skip, 𝑐′)
𝑖𝑑 ⊢ (𝑆1, 𝑐′) →∗ (skip, 𝑐′′)
𝑖𝑑 ⊢ (𝑆0;𝑆1, 𝑐) → (skip, 𝑐′′)

Assign-Var
𝐿𝑐 [𝑖𝑑] ⊢ 𝑒 → 𝑣

𝑐′ = (𝐿𝑐 [𝑖𝑑] [𝑥 ↦→ 𝑣], 𝐵𝑐 , 𝑆𝑂𝑐)
𝑖𝑑 ⊢ (𝑥 := 𝑒, 𝑐) → (skip, 𝑐′)

Send
𝑚 = (𝑖𝑑, 𝑒𝑣, 𝑣, 𝑡𝑖𝑑, fresh(𝑚𝑖𝑑, 𝑐)) (c5)

𝑐′ = (𝐿𝑐 , 𝐵𝑐 ∪ {𝑚}, 𝑆𝑂𝑐′) (c6)
𝑆𝑂𝑐′ = 𝑆𝑂𝑐 ∪ { (𝑚′,𝑚) |𝑚′ .src = 𝑖𝑑 ∧𝑚′ ∈ 𝐵𝑐 } (c7)

𝑖𝑑 ⊢ (send(𝑡𝑖𝑑, 𝑒𝑣, 𝑣), 𝑐) → (skip, 𝑐′)

If-Then
𝐿𝑐 [𝑖𝑑] ⊢ 𝑒 ↓ true

𝑖𝑑 ⊢ (if 𝑒 then 𝑆0 else 𝑆1, 𝑐) → (𝑆0, 𝑐)

If-Else
𝐿𝑐 [𝑖𝑑] ⊢ 𝑒 ↓ false

𝑖𝑑 ⊢ (if 𝑒 then 𝑆0 else 𝑆1, 𝑐) → (𝑆1, 𝑐)

Choose
𝑣 ∈ 𝑉

𝐿𝑐 [𝑖𝑑] ⊢choose𝑉 ↓ 𝑣

Fig. 3. Macro-Step Semantics for P programs

intended recipient of the message, and𝑚𝑖𝑑 is an unique identifier associated with each message.
For any𝑚 ∈ M, we refer to its components as𝑚.𝑠𝑟𝑐 ,𝑚.ev,𝑚.𝑣 ,𝑚.𝑡𝑔𝑡 , and𝑚.𝑚𝑖𝑑 respectively.
Event Handlers. Recall that each state machine declaration in P has a set of event handlers per
state. Each event handler is responsible for processing messages with the associated event type (e.g.,
in Fig. 1, line 26 defines an event handler for messages with event type eWorkItem). All messages
with the same event type that are received in the same target machine state thus have the same

event handler. LetH be the set of all event handlers in the given P program. Let 𝐻 : S𝑖𝑑 × E → H
be a partial function that given the current state of a machine and an event type maps it to the
event-handler declared in the P program that gets executed to handle the received event. An event
handler ℎ ∈ H is a function that takes the message received as an argument and returns a sequence
of P statements. We refer the readers to [Desai et al. 2013a] for more details.
Configurations. A configuration of a P program is represented as a tuple (𝐿, 𝐵, 𝑆𝑂): (1) first
component 𝐿 is a partial map from 𝑖𝑑 : I to S𝑖𝑑 . If 𝑖𝑑 ∈ dom(𝐿), then 𝐿[𝑖𝑑] is the state of the
machine referenced by 𝑖𝑑 ; (2) second component 𝐵 is the global buffer represented set of messages
that have been sent during the execution but have not been received by the target machine; (3) third
component 𝑆𝑂 (⊆ M𝑢 ×M𝑢) is a relation used to capture the send-order of instances of messages
sent during the execution and ensure the FIFO buffer semantics in P (unlike the bag semantics
allowed in typical actor systems). If (𝑚1,𝑚2) ∈ 𝑆𝑂 , then𝑚1 was sent before𝑚2. Let C represent
the set of all configurations. The initial configuration 𝑐0 of a P program is defined as (𝐿𝑐0 , 𝐵𝑐0 , 𝑆𝑂𝑐0)
where 𝐿𝑐0 maps the set of machine instances at the start of the program to their local state and 𝐵𝑐0
contains only messages from the same sender, i.e., ∀𝑚,𝑚′ ∈ 𝐵𝑐0 . 𝑚.𝑠𝑟𝑐 =𝑚′ .𝑠𝑟𝑐 .

3.2 Macro-step Semantics for P
A P program steps from one configuration to another via a labeled-transition, each of which receives
a message. A macro step (or schedule step) is represented as 𝑐

𝑚
==⇒ 𝑐′, where label𝑚 indicates the

message received during the transition that takes the system from configuration 𝑐 to 𝑐′ by executing
the appropriate event handler. The rules for macro-step semantics are shown in Fig. 3.
Schedule Step. The first rule presents the macro-step transition, given a mapping 𝐻 from machine
states and messages to event handlers. A step 𝑐

𝑚
==⇒ 𝑐′ is only possible whenever the transition that

receives message𝑚 is enabled in 𝑐 . Formally, this condition (labeled (c1)) is denoted by predicate
enabled(𝑐,𝑚) defined as :𝑚 ∈ 𝐵𝑐 ∧ ∀𝑚′ ∈ 𝐵𝑐 .𝑚′ ≠𝑚 ∧𝑚′ .𝑡𝑔𝑡 =𝑚.𝑡𝑔𝑡 ⇒ (𝑚′,𝑚) ∉ 𝑆𝑂𝑐 .

In P programs, because of FIFO buffer semantics, messages must be received in an order consistent
with the causal relation of their sendings. In particular, (1) any message𝑚′ sent in response to
a receive of another message𝑚 must be received after𝑚 is received, and (2) any two messages
sent to the same target must be received in the order they were sent, respecting the send-order

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 7

relation. The first condition is handled by adding messages to 𝐵𝑐 immediately upon sending them
and removing them immediately upon receiving them, as noted in Fig. 3. The second condition is
addressed by the enabled(𝑐,𝑚) predicate for the P programs, which ensures that for any message
𝑚 that can be received by𝑚.𝑡𝑔𝑡 , all other messages𝑚′ with the same target are sent after𝑚.

Executing the macro step involves removing the message𝑚 from buffer 𝐵𝑐 (c2), and executing
the corresponding event handler ℎ in the target machine (c3) on message𝑚. The condition (c4)

represents execution of the sequence of statements ℎ(𝑚) at the target machine𝑚.𝑡𝑔𝑡 , which may
only change the local state of the target machine and the global buffer (if a send statement is
executed).→∗ denotes the reflexive transitive closure of→ transitions (used for statements).
Statements. In Fig. 3, the next five rules present semantics of some of the statements in P han-
dlers that have non-trivial semantics when lifted for symbolic exploration (revisited in §5.1). The
Seqence, Assign-Var, If-Else, and If-Then rules are straightforward and present the common
semantics for sequence, assignment, and if-then-else statements, respectively. Here, ↓ denotes the
big-step semantics for evaluation of an expression 𝑒 to a value 𝑣 , and ⊤, ⊥ denote the Boolean
values true, false, respectively. The Send rule present the semantics of asynchronous send statement
send t,ev,v , which sends a message𝑚 (c5) with event ev, payload v to target machine t, and a
fresh message id. It adds message𝑚 to the global buffer (c6) and updates the send-order relation
(c7) so that all previously-sent messages in the buffer that came from the same source machine are
related to the new message𝑚. 𝑆𝑂𝑐 is updated so if 𝐵𝑐 is nonempty, there is at least one message
𝑚 for which enabled(𝑐,𝑚) holds. Finally, the Choose rule presents the semantics of the choose
operation in P used for introducing data non-determinism in the programs.
Execution. An execution of a P program is a sequence of macro steps for it 𝑐0

𝑚0
==⇒ · · ·

𝑚𝑛−1
=====⇒ 𝑐𝑛

𝑚𝑛

===⇒
· · · . They are partial (vs. full) when they are finite and the last configuration can take a macro step.

4 SYMBOLIC REPRESENTATION OF CONFIGURATIONS: VALUE SUMMARIES
In this section, we describe details of our proposed symbolic representation of configurations
for distributed systems. These are critical for efficient symbolic exploration (§5) and could be
potentially useful in other verification techniques for distributed systems. The technical definitions
are summarized in a cheat-sheet shown in Fig. 4, with explanations in the related subsections.

4.1 Identifying Overlapping Transitions
Recall from our motivating example (§2.4) that a novel element of our approach is to identify
redundancies due to overlapping transitions, e.g., the transitions from 𝑐4 in Fig. 2. A transition

corresponds to a schedule step in the concrete semantics (Fig 3), that receives a message at a target
machine, executes the corresponding event handler, and moves the system to the next configuration.
Fig. 4(a) shows the technical definition for overlapping transitions. Informally, two transitions
overlap if they operate on the same machine (tgt), and at least one of their update computations can
be performed by the same function (h), on the same local variables (S𝑜) and payloads (𝑣𝑜). Other
update computations may also be performed, constituting the transitions’ non-overlapping parts.
Identifying functionally equivalent computations in arbitrary transitions requires additional

semantic analyses in general. In this work, we instead use a simple syntactic approach, using having
the same event handler as a proxy: when two transitions execute the same event handler at the
same target machine, we aim to ensure that their overlapping computations are executed only once.

4.2 Requirements on Symbolic Representations of Configurations
We now consider requirements on our symbolic representations that will help identify overlapping
transitions on-the-fly during symbolic exploration and achieve savings by avoiding redundancies.
We illustrate them by revisiting the motivating example in Fig. 2.

, Vol. 1, No. 1, Article . Publication date: June 2023.

8 Lauren Pick, Ankush Desai, and Aarti Gupta

(a) Overlapping transitions

Let 𝑐1
𝑚1
==⇒ 𝑐′1, 𝑐2

𝑚2
==⇒ 𝑐′2 be transitions and tgt, S𝑜 , 𝑣𝑜 be such that the following conditions hold:

Same target, tgt: tgt =𝑚1.tgt =𝑚2.tgt

Local state overlap, S𝑜 : ∀𝑥 .S𝑜 [𝑥] = 𝑐1.𝐿[tgt] .𝑥 ⇔ 𝑐1 .𝐿[tgt] .𝑥 = 𝑐2.𝐿[tgt] .𝑥
Payload overlap, 𝑣𝑜 : 𝑣𝑜 [𝑝] =𝑚1.𝑣 .𝑝 ⇔𝑚1.𝑣 .𝑝 =𝑚2 .𝑣 .𝑝
For 𝑖 ∈ {1, 2}, let {𝑥1, . . . , 𝑥𝑛} be the domain of local variables 𝑐𝑖 .𝐿[tgt],
and let {f𝑖 (𝑥1), . . . f𝑖 (𝑥𝑛)} be the update functions that compute updates to these local variables,
i.e., for 1 ≤ 𝑗 ≤ 𝑛, 𝑐𝑖 .𝐿[tgt] [𝑥 𝑗] = 𝑓𝑖 (𝑥 𝑗) (𝑐𝑖 .𝐿[tgt],𝑚𝑖 .𝑣).
The transitions 𝑐1 and 𝑐2 are overlapping if there exists an 𝑥 in the domain of S𝑜 , such that
there exists a function h with h(S𝑜 , 𝑣𝑜) = 𝑓1 (𝑥) (𝑐1.𝐿[tgt],𝑚𝑖 .𝑣) = 𝑓2 (𝑥) (𝑐2.𝐿[tgt],𝑚𝑖 .𝑣), and
there exists 𝑖 ∈ {1, 2} such that h(S𝑜 , 𝑣𝑜) ≠ 𝑐𝑖 .𝐿[tgt] [𝑥] (i.e., 𝑥 is changed by ℎ in 𝑐1 or 𝑐2).
(b) Primitive value summaries: Invariant properties for guarded values (𝑔, 𝑣)
Non-overlapping guard ∀(𝑔′, 𝑣 ′) ∈ pvs.𝑣 ≠ 𝑣 ′ ⇒ 𝑔 ∧ 𝑔′ ⇒⊥
Unique value ∀(𝑔′, 𝑣 ′) ∈ pvs.𝑔 . 𝑔′ ⇒ 𝑣 . ¬𝑣 ′
Non-vacuous 𝑔 ⇏⊥

(c) Composite value summary representations

Tuple value summary (𝑥0, . . . , 𝑥𝑛) where all 𝑥𝑖 are value summaries with same domain
List value summary (𝑠, ls) with integer value summary 𝑠 , value summary list ls
Map value summary mp : 𝜏 → 𝜏 ′ where every element in 𝜏 ′ is a value summary

(d) Core operations on primitive/composite value summaries

Removing spurious guards: rmf (pvs) = {(𝑔, 𝑣) | (𝑔, 𝑣) ∈ pvs ∧ 𝑔 ≠⊥}

Domain operation: 𝐷 (vs) =


∨{𝑔 | (𝑔, 𝑣) ∈ vs} vs is primitive
𝐷 (𝑠) vs = (𝑠, ls), vs is a list value summary∨{𝐷 (vs𝑖) | 𝑖 ∈ {0, . . . , 𝑛}} vs = (vs0, . . . , vs𝑛)∨{𝐷 (vs′) | ∃𝑘.vs[𝑘] = vs

′} vs is a map
Merging operation: 𝑀 ({vs0, . . . , vs𝑘 }) = if 𝑘 = 1 then𝑀 (𝑣𝑠0, 𝑣𝑠1) else𝑀 (𝑣𝑠0, 𝑀 (𝑣𝑠1, . . . , 𝑣𝑠𝑘))

𝑀 (vs0, vs1) =



vs0 ∪ vs1 vs0, vs1 are primitive value summaries
(𝑀 (vs00, vs

0
1), . . . , 𝑀 (vs

𝑛
0 , vs

𝑛
1)) vs𝑖 = (vs0𝑖 , . . . , vs

𝑛
𝑖
) (tuple or list value summary)

vs𝑖 where vs 𝑗 = [] for 𝑗 ≠ 𝑖, 𝑗, 𝑖 ∈ {0, 1}
𝑀 (𝑥0, 𝑥1) :: 𝑀 (xs0, xs1) vs0 = 𝑥0 :: xs0 and vs1 = 𝑥1 :: xs1, where :: is cons
mergeMap(mp0,mp1) vs is a map

where 𝐷 (vs0) ∧ 𝐷 (vs1) =⊥ (i.e., non-overlapping domains) and mergeMap(mp0,mp1) is
{𝑘 ↦→ vs | vs = 𝑀 (mp0 [𝑘],mp1 [𝑘]) ∨ ∃𝑖, 𝑗 ∈ {0, 1}.vs = mp𝑖 [𝑘] ∧ 𝑘 ∉ keys(mp 𝑗)}

Restriction operation: (vs |𝜙) =


⋃

rmf ({(𝑔 ∧ 𝜙, 𝑣) | ∃(𝑔, 𝑣) ∈ vs}) vs is primitive
((vs0 |𝜙), . . . , (vs𝑛 |𝜙)) vs = (vs0, . . . , vs𝑛)
((𝑠 |𝜙), (ls |𝜙)) vs = (𝑠, ls)
{𝑘 ↦→ (vs′ |𝜙) | vs[𝑘] = vs

′} vs is a map
Getting guards for values: ∃𝑔.(𝑔, 𝑣) ∈ pvs⇒ getGuardFor (pvs, 𝑣) = 𝑔

Updating under a guard: updateUnderG(vs, vs′, 𝑔) = 𝑀 ((vs |¬𝑔), (vs′ |𝑔))
Fig. 4. Technical cheat sheet for overlapping transitions and value summaries.

R1. Fine-grained Component-level Representation of Configurations and Messages.We
require a decomposed representation of configurations, which maintains a separate representation
for each configuration component, so that we can identify when transitions correspond to the

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 9

same event handler. Recall that in P, event handlers are identified by the local state and event
type; furthermore, the possible event types and payloads for the next transition are determined by
the global message buffer. Thus, the decomposed representation should be fine-grained enough
to represent the local state of a machine instance, and the event types and payloads of messages
separately. For example, 𝑐4 in Fig. 2 has messages for 𝑟0, 𝑟1, 𝑟2 in its global buffer. These messages all
have event type eRegisterWorker and are all sent to the Registry instance – this can be detected
only with a fine-grained representation of configurations and message components.
R2. Canonicity of Symbolic Representations. We need to identify when configuration and
message components are equivalent. Canonical representations – i.e., where equivalent sets of
configurations/messages have identical representations – make such identification quick and cheap,
and allows us to efficiently detect when transitions have the same event handlers. We also require
that each configuration update maintain canonicity, preventing the exploration from revisiting
redundant configurations at the same execution depth. For example, in Fig. 2, canonicity ensures
that 𝑐1 and 𝑐2 have the same representation during exploration, making it easy to detect and avoid
redundant exploration of the blue subtree under 𝑐2. (Note that POR techniques cannot detect the
equivalence of 𝑐1 and 𝑐2 because they occur under different interleavings of dependent transitions.)
R3. Association of Nondeterministic Choices with Values. Finally, we require that symbolic
representations implicitly implement a function from sequences of nondeterministic choices taken
during exploration to specific values, in order to understand the explored behaviors and to produce
counterexample traces. For systematic exploration, these sequences should include all scheduling
choices taken during execution, as well as any choices due to control-flow or data nondeterminism.

4.3 Value Summaries for Configurations of Distributed Systems
To satisfy requirements R1-R3, we use a symbolic representation inspired by MultiSE [Sen et al.
2015], a systematic exploration framework for sequential programs. In MultiSE, value summaries
represent sets of concrete values for individual variables under different guards, where guards
capture control-flow and input nondeterminism. Importantly, value summaries provide a canonical
representation of the program state, which other symbolic representations, such as those based on
formulas in solvers for Satisfiability Modulo Theories [Barrett et al. 2009] do not. In this work, we
extend guards in value summaries to capture scheduling choices also. We also propose composite

value summaries to represent components of a distributed system in a fine-grained manner. To
the best of our knowledge, we are the first to use MultiSE-style value summaries for distributed
systems.
4.3.1 Guards and Scheduling Choices. Value summaries are based on guard-value pairs, called
guarded values, where a guard is a propositional logic formula over Boolean-valued guard variables,
and all guards in a summary are non-overlapping [Sen et al. 2015]. We propose the use of SCI
Guards, which represent choices in the presence of Scheduling, Control, and Input nondeterminism.
As we will see in §5.1, we introduce fresh variables in guard formulas to symbolically encode the
set of possible choices for any nondeterministic choice (both input and scheduling) made during
exploration. This associates a unique guard with each possible nondeterministic choice, leading to
unique guards for each sequence of choices arising during exploration. Thus, this representation
satisfies R3.
4.3.2 Primitive Value Summaries. A primitive value summary pvs is a set of guarded values. Each
pair (𝑔, 𝑣) represents a fact that the value 𝑣 is taken under the guard 𝑔 We define three invariant
properties for each guarded value (𝑔, 𝑣) in a value summary pvs, shown in Fig. 4(b). Two value
summaries are equivalent (denoted with ≡) iff they have equivalent values under all the guards.
Tunable Value Summaries. Guards that capture nondeterministic choices are represented sym-
bolically; however, the representation for the value components of each guarded value, as in

, Vol. 1, No. 1, Article . Publication date: June 2023.

10 Lauren Pick, Ankush Desai, and Aarti Gupta

MultiSE [Sen et al. 2015], is not restricted, as long as it supports a check for equivalence. (Though
for best performance, canonical representations should be used.) In our work, we use concrete as
well as abstract values. We assume concrete values when discussing our symbolic explorer (§5), to
focus on the symbolic guard-based operations needed for efficient exploration, but discuss how to
use a simple predicate abstraction [Graf and Saïdi 1997] to represent values in §6. Thus, our value
summaries are tunable, where the value representation can range from concrete to symbolic to
abstractdomains.

4.3.3 Composite Value Summaries. We use primitive value summaries as building blocks to propose
composite value summaries for representing composite data structures (e.g., tuples, lists). Composite
value summaries are also a novel contribution of our work. They enable fine-grained symbolic
representations of configurations and messages in distributed systems, satisfying requirement R1.
A composite value summary is constructed out of other value summaries (primitive or composite).
We show them for tuples, lists, and maps in Fig. 4(c) – these are needed to represent P programs.

Example 4.1. Consider the messages (worker𝑖 , eRegisterWorker, 𝑖, reg), 𝑖 ∈ {0, 1, 2} sent by
Workermachines (Fig. 1). The following value summary captures these under distinct guards where
𝑔0, 𝑔1, 𝑔2 are formulas with pairwise empty conjunctions, and id0, id1, id2 are unique message ids:
({ (𝑔𝑖 , worker𝑖) | 𝑖 ∈ {0, 1, 2}}, { (⊤, eRegisterWorker) }, { (𝑔𝑖 , 𝑖) | 𝑖 ∈ {0, 1, 2}}, { (⊤, reg) }, { (𝑔𝑖 , id𝑖) | 𝑖 ∈ {0, 1, 2})

Note the lack of redundancy in representing the three messages’ types – eRegisterWorker occurs
only once in the value summary.
4.3.4 Core Operations on Value Summaries. We now discuss core operations on value summaries,
shown in Fig. 4(d), that will be used for symbolic exploration. In particular, the lifted semantics
(§5.1) used by the exploration algorithm in §5 uses the domain operation to get the guard under
which a configuration should be modified, and the merge and restrict operation to update only the
part of the configuration that should be modified by a transition.
Domain. The domain 𝐷 (vs) of a value summary vs (symbolically) is a Boolean formula that
represents the set of guards under which it has a value. In particular, note that the domain of a list
value summary (𝑠, ls) is recovered by taking the domain of its size component 𝑠 . Updates to a list
value summary must maintain the invariant that each element of ls has a domain that implies 𝐷 (𝑠).
Merging. The result of merging of two value summaries vs0, vs1 is another value summary, defined
under the condition 𝐷 (vs0) ∧ 𝐷 (vs1) =⊥ (i.e., non-overlapping domains). The result of merging a
set of value summaries is defined similarly.
Restriction. Restricting a value summary vs’s domain by a guard 𝜙 , denoted (vs |𝜙), yields a value
summary with domain 𝐷 (vs) ∧ 𝜙 , which represents only the values in vs under guard 𝜙 .
Getting Guards for Values. The function getGuardFor takes a primitive value summary pvs and a
value 𝑣 and returns an SCI Guard 𝑔 such that (𝑔, 𝑣) ∈ pvs.
Updating under a Guard. Updating a value summary vs under an SCI Guard 𝑔 allows us to model
assignments under the nondeterministic choices captured by 𝑔. Such an update can be easily defined
by using merging (𝑀): updateUnderG(vs, vs′, 𝑔) = 𝑀 ((vs |¬𝑔), (vs′ |𝑔)). Note that the restriction
operations make the domains of the arguments to the merge non-overlapping.

4.4 Canonicity of Value Summaries
We now state an important theorem for value summaries that is maintained by the operations on
value summaries defined above (a proof is provided in Appendix A).

Theorem 4.2 (Canonicity of Value Summaries). If a canonical representation is used for propo-

sitional formulas and for value components of guarded values, then all value summaries are such that,

for any two value summaries vs0, vs1, vs0 ≡ vs1 iff vs0 = vs1.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 11

Tuples ℓ (𝑥0, . . . , 𝑥𝑛) = (ℓ (𝑥0), . . . , ℓ (𝑥𝑛)) Maps ℓ (𝑚) = {𝑥 ↦→ ℓ (𝑚[𝑥]) | 𝑥 ∈ Dom(𝑚)}
Lists ℓ ([]) = (ℓ (0), []) ℓ (𝑥 :: 𝑥𝑠) = (ℓ (len(𝑥 :: 𝑥𝑠)), ℓ (𝑥) :: ℓ (𝑥𝑠))

Fig. 5. Lifting of data structures

Here ≡ denotes semantic equivalence and = denotes syntactic equality. By this theorem, value
summary representations satisfy requirement R2. Like MultiSE [Sen et al. 2015], we represent
guards with Binary Decision Diagrams (BDDs) [Bryant 1986]. BDDs are used in a very limited way
here – only to represent the guards in value summaries. In general, the size of state representations
is a scalability concern, but the regular structure in practical programs of interest can help avoid
blowup. As demonstrated in §8, our tool successfully handles many standard and industry-strength
benchmark programs.

5 SYMBOLIC STATEFUL EXPLORATION USING VALUE SUMMARIES
In this section, we first describe how to lift P values and semantics to value summaries, and then
present our novel symbolic explorer that operates over the lifted P program.

5.1 Lifting Values and Functions to Value Summaries
Let VS(𝜏) represent the value summary representation for any value of type 𝜏 . Let ℓ : 𝜏 →
VS(𝜏) denote the lifting function1 and Vals denote the function that determines the set of values
represented by a lifted value summary under any guard. Vals and ℓ meet the following requirements:
- For any 𝑣 , Vals(ℓ (𝑣)) = {𝑣}
- For any function 𝑓 , ℓ (𝑓) is deterministic and Vals(ℓ (𝑓) (ℓ (args))) = {𝑟 | 𝑓 (args) can return 𝑟 }
Functions ℓ and Vals can be seen as restricted forms of an abstraction and concretization function,

respectively, where abstraction does not introduce any imprecision.
Lifting Data Structures. The P language contains several types that may be used in event and
state handlers: primitive types, tuples, lists, sets, and maps [P-GitHub 2023]. For these types other
than sets, we directly use their corresponding value summaries to represent them; for sets we use
list value summaries, e.g., by representing sets as sorted lists with no duplicate elements. Formally,
we have ℓ (𝑝) = {(⊤, 𝑝)} for primitive value 𝑝 and Vals(pvs) = {𝑣 | ∃𝑔.(𝑔, 𝑣) ∈ pvs} for primitive
value summary pvs. Fig. 5 shows how to lift concrete composite data structures by recursively
applying ℓ .
Lifting Functions. A function 𝑓 : 𝜏 → 𝜏 ′ over primitive types can be lifted to ℓ (𝑓) : VS(𝜏) →
VS(𝜏 ′), which iterates over values in the provided primitive value summary vs and combines
guarded values with the same values into a single guarded value as follows: 𝜆vs.{(∨𝐺, 𝑣 ′) | 𝐺 =

{𝑔 | (𝑔, 𝑣) ∈ vs ∧ 𝑓 (𝑣) = 𝑣 ′}}. In effect, evaluating 𝑓 (𝑥) requires evaluating 𝑓 on each concrete
value represented by 𝑥 . For composite value summaries, lifting is more involved, since for efficiency,
we want to avoid having to enumerate all the concrete values represented by a composite value
summary. As an example, the equality check 𝑣0 = 𝑣1, which returns a value 𝑏 ∈ {⊤,⊥}, can be
lifted to =ℓ , which takes two value summaries and returns a Boolean value summary VS({⊤,⊥}).
For composite arguments, such a lifting of =ℓ should recursively evaluate =ℓ on corresponding
components of the value summaries and return the conjunction of the results.

Example 5.1. Consider checking the equality of the following tuple value summaries, where
𝑋,𝑌 are finite subsets of N: ({(𝑔𝑖 , 𝑥𝑖) | 𝑖 ∈ 𝑋 }, {(⊤, 𝑦0)}), ({(⊤, 𝑥0)}, {(𝑔𝑖 , 𝑦𝑖) | 𝑖 ∈ 𝑌 }). We first
recursively check equality of the first elements, yielding result {(𝑔0,⊤), (¬𝑔0,⊥)}. This check
involves |𝑋 | comparisons, comparing each 𝑥𝑖 with 𝑥0. We then do the same for the second elements,
yielding the same in |𝑌 | comparisons. The equality check gives result {(𝑔0,⊤), (¬𝑔0,⊥)}. Note that
1We overload the notation ℓ (·) to denote lifting of both values and functions.

, Vol. 1, No. 1, Article . Publication date: June 2023.

12 Lauren Pick, Ankush Desai, and Aarti Gupta

Schedule Step
choices = ℓ (𝜆𝑥.{𝑦 | enabled(𝑦, 𝑥) }) (𝑐) 𝑔 = 𝜙 ∧

∨
{𝐷 (choice) | choice ∈ choices} (c8) 𝑔, {} ⊢choose choices ↓𝑚 (c9)

𝑐′′ = (𝐿𝑐 , 𝐵𝑐 \ {𝑚}, 𝑆𝑂𝑐) (10) {𝑔0, . . . , 𝑔𝑛 } = {𝜙 | ∃𝑡, ev.𝜙 = getGuardFor (𝑚.𝑡𝑔𝑡, 𝑡) ∧ getGuardFor (𝑚.ev, ev) } (c11)
∀0 ≤ 𝑖 ≤ 𝑛.𝑚𝑖 = (𝑚 |𝑔𝑖) ∧𝐻 [𝐿𝑐 [𝑚.𝑡𝑔𝑡𝑖],𝑚𝑖 .ev] = ℎ𝑖

(c12)

𝑔0,𝑚0 .𝑡𝑔𝑡 ⊢ (ℎ0 (𝑚0), 𝑐′′) →∗ (skip, 𝑐′0) . . . 𝑔𝑛,𝑚𝑛 .𝑡𝑔𝑡 ⊢ (ℎ𝑛 (𝑚𝑛), 𝑐′𝑛−1) →∗ (skip, 𝑐′𝑛)
(c13)

𝑐′ = (𝑐′𝑛 |𝐷 (𝑚)) (c14)

𝐻,𝜙 ⊢ 𝑐 𝑚
==⇒ 𝑐′

Assign-Var
𝐿𝑐 [𝑖𝑑] ⊢ 𝑒 ↓ 𝑣

𝑐′ = (𝐿𝑐 [𝑖𝑑] [𝑥 ↦→ updateUnderG (𝑥, 𝑣, 𝑔)], 𝐵𝑐 , 𝑆𝑂𝑐)
𝑔, 𝑖𝑑 ⊢ (𝑥 := 𝑒, 𝑐) → (skip, 𝑐′)

Send
𝑚 = ((𝑖𝑑, 𝑒𝑣, 𝑣, tid, fresh(𝑚𝑖𝑑, 𝑐)) |𝑔) (15) 𝑐′ = (𝐿𝑐 , 𝐵𝑐 ∪ {𝑚}, 𝑆𝑂𝑐′) (16)
𝑆𝑂𝑐′ = 𝑆𝑂𝑐 ∪ ℓ (𝜆𝑥, 𝑦.{ (𝑚′, 𝑥) |𝑚′ .src = 𝑥.𝑖𝑑 ∧𝑚′ ∈ 𝑦}) (𝑚, (𝐵𝑐 |𝑔)) (c17)

𝑔, 𝑖𝑑 ⊢ (send(tid, 𝑒𝑣, 𝑣), 𝑐) → (skip, 𝑐′)

If
𝐿𝑐 [𝑖𝑑], 𝑔 ⊢ 𝑒 ↓ 𝑣 𝑔0 = 𝑔 ∧ getGuardFor (𝑣,⊤)

𝑔1 = 𝑔 ∧ getGuardFor (𝑣,⊥) 𝑔0, 𝑖𝑑 ⊢ (𝑆0, 𝑐) →∗ (skip, 𝑐′)
𝑔1, 𝑖𝑑 ⊢ (𝑆1, 𝑐′) →∗ (skip, 𝑐′′)

𝑔, 𝑖𝑑 ⊢ (if 𝑒 then 𝑆0 else 𝑆1, 𝑐) → (skip, 𝑐′′)

Choose
𝐵 = getFreshGuardVariables (⌈log(|V |) ⌉) (c18)

𝑉 = {𝑣1, . . . , 𝑣|𝑉 | }
𝑣 = 𝑀 ({ (𝑣𝑖 |encodeUsing (𝑖, 𝐵, |𝑉 |)) }𝑖=1..|𝑉 |) (c19)

𝑔, 𝐿𝑐 [𝑖𝑑] ⊢choose𝑉 ↓ (𝑣 |𝑔)

Fig. 6. Lifted semantics for P programs where \ and ∪ are lifted versions of their corresponding operations.

if we used a primitive value summary representation of these tuples rather than composite value
summaries, we would need to perform at least |𝑋 | × |𝑌 | comparisons, since we would have to
compare each pair in the first summary to each in the second.

When implementing lifted data structures and functions, it is important for the sake of efficiency
to expose and take advantage of the decomposed representation of composite value summaries as
much as possible. For example, the list value summary representation maintains and exposes the
size of the list, which allows efficient implementations of operations to get the value summary’s
domain or the list’s size. Appendix B contains more details about lifting [Pick et al. 2023b].

5.2 Lifted Semantics for P Programs
Fig. 6 shows the result of lifting the rules for P semantics from Fig. 3. See Appendix C for the full
set of rules. While we use the same notation for configurations, messages, handlers, etc., note that
these have all been lifted to value summaries in Fig. 6. In particular, the set of pending messages 𝐵𝑐
and the send order 𝑆𝑂𝑐 are also value summaries – this enables processing overlapping transitions
together when they have the same event handler. The map 𝐻 has also been lifted to map value
summary arguments to a lifted handler. Because these have been lifted to value summaries, we
meet requirements R1-R3 (§4.2) for our configuration and message representations.
Guard in a Context. For all rules, there is a guard 𝑔 (or 𝜙 in Schedule Step) in the context –
this keeps track of the current SCI Guard in the execution so far, and all lifted operations occur
under 𝑔 (or 𝜙). Recall that the SCI Guard characterizes all the nondeterministic choices made in
the execution, thus 𝑔 determines a subset of the paths in the execution tree and restricts which
configurations in the frontier get updated. More formally, if 𝑔, 𝑖𝑑 ⊢ (𝑆, 𝑐) → (𝑆 ′, 𝑐′), we have
that (𝑐 |¬𝑔) = (𝑐′ |¬𝑔) (and analogously for the

𝑚
==⇒ step), i.e., the configurations under ¬𝑔 are not

updated. This can be seen in the Send rule’s use of restriction and in the Assign-Var rule’s use of
updateUnderG (both defined in Fig. 4(d)). Similarly, the operations also occur under the domain of
the current configuration 𝐷 (𝑐), so that if 𝑔, 𝑖𝑑 ⊢ (𝑆, 𝑐) → (𝑆 ′, 𝑐′), we have that 𝐷 (𝑐′) implies 𝐷 (𝑐)
(and analogously for the

𝑚
==⇒ step).

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 13

Lifted Event Handler. For any configuration, all enabled messages that share the same event
handler are handled by a single invocation of a lifted version of the event handler, which is executed
on a value summary that captures all their payloads. This results in fewer handler invocations
and less redundant computation than handling them separately. As we will show in §8.2, there are
many opportunities in distributed systems to handle messages together this way.
Choose. The Choose procedure implements the semantics for the choose operation, which takes
a set 𝑉 of value summaries. It generates a single value summary that captures all the values 𝑣𝑖 ∈ 𝑉 .
Specifically, it introduces fresh Boolean guard variables 𝐵 (c18) to construct a primitive value
summary 𝑣 (c19), such that Vals(𝑣) = 𝑉 and each guarded value in 𝑣 uses only variables in 𝐵.
This effectively encodes all the possible nondeterministic choices in 𝑉 . In particular, the function
encodeUsing(𝑖, 𝐵, size) is defined for 1 ≤ 𝑖 ≤ size and behaves as follows: for 𝑖 < size, it gives the
binary encoding bin(𝑖 − 1, 𝐵) for 𝑖 − 1 using the guard variables in 𝐵, and for 𝑖 = size, it returns∧{bin(𝑘 − 1, 𝐵) | size ≤ 𝑘 ≤ |𝐵 |2}. The effect is that encodeUsing uses 𝐵 to create size symbolic
partitions, each of which becomes a guard in 𝑣 . However, this choose operation as described leaves
some “left over” values under the guard (∨{𝐷 (𝑣𝑖) | 𝑣𝑖 ∈ 𝑉 } ∧ ¬𝐷 (vs)) (when it is not false). Such
values should be eliminated by restricting subsequent operations by 𝐷 (vs) as leaving “left over”
values can result in re-exploration of choices.
Schedule Step. Compared with Fig. 3, the Schedule Step rule looks the most different, since it
now must advance all configurations in the frontier set rather than a single frontier configuration.
It finds the guard under which there are enabled messages to schedule (c8), and then uses Choose
to make a nondeterministic choice over enabled messages (c9), since scheduling nondeterminism
is handled in the same way as input and control-flow nondeterminism. The enabled message value
summary𝑚 here represents the set of messages that can be received next for all configurations in
the frontier set. Put another way, consider the case in the original semantics where we have a set
of messages Mess and configuration value config, where each mess ∈ Mess is enabled in config (see
(c1) in Fig. 3). For any configuration value summary 𝑐 in the lifted semantics with config ∈ Vals(𝑐),
if we can take a Schedule Step from 𝑐 , then Mess ⊆ Vals(𝑚), where𝑚 is as in (c9).
Removing {𝑚} from pending messages set 𝐵𝑐 (c10) involves removing all these messages only

under their corresponding domains, introduced by the choose operation. After this removal, which
yields (intermediate) configuration 𝑐′′, the guards change accordingly: for any message value
mess ∈ Vals(𝑚), mess ∉ Values((𝐵𝑐′′ |𝐷 (𝑚))). “Left over” enabled messages in (𝐵𝑐′′ |¬𝐷 (𝑚)) are
eliminated in (c14).
For each distinct target and event in𝑚 under guard 𝑔𝑖 (c11), there is a unique (lifted) event

handler ℎ𝑖 (c12). The number of distinct targets and events in𝑚 may be less than the number of
distinct messages in𝑚 – in such cases, we process these overlapping messages with the same ℎ𝑖 .
In order to process all messages, Schedule Step runs all such event handlers under each guard
𝑔𝑖 (c13), and then finally restricts the resulting configuration to the domain 𝐷 (𝑚) under which
a message was processed (c14). Note that 𝑚𝑖 .𝑣 is the payload for all messages in 𝑚𝑖 , so each
lifted handler runs only once per distinct target and event pair in𝑚, and on a value summary that
represents potentially multiple message payloads. This achieves the goal in requirement R1: to
identify when transitions correspond to the same event handler and handle them together.
Assign-Var. The Assign-Var rule is as in Fig. 3, but with the the map 𝐿𝑐 [id] lifted to be over
value summaries (as in Fig. 5). The update of the map assignment to 𝑥 correspondingly becomes an
update of the value only under the guard 𝑔, via updateUnderG.
Send. The Send rule is also a fairly straightforward lifting of the corresponding rule from Fig. 3.
Recall that the set of pending messages 𝐵𝑐 and the send orders SO𝑐 , SO𝑐′ have been lifted to set
value summaries. The update to the set of pending messages 𝐵𝑐 (c16) happens only under the
domain for message𝑚, which has been restricted by 𝑔 (c15). The update to the send-order relation
(c17) is also done similarly, adding messages only under 𝑔.

, Vol. 1, No. 1, Article . Publication date: June 2023.

14 Lauren Pick, Ankush Desai, and Aarti Gupta

Algorithm 1 Explicit exploration of one execution.
1: procedure Explore(𝑃)
2: (𝑐, 𝐻) ← (InitialConfig(𝑃), GetHandlers(𝑃))
3: while 𝐵𝑐 ≠ ∅ do

4: 𝑐 ← ScheduleStep(𝐻, 𝑐)

If. The If rule replaces both of the branching rules from Fig. 3. It executes the then branch under
the guard 𝑔0 for which condition 𝑒 evaluates to ⊤, and the else branch under the guard 𝑔1 for which
it evaluates to ⊥, suitably updating the value summaries in a single step of the semantics.

Example 5.2. Consider running Schedule Step for the example in Fig. 1 at the root of the
execution tree in Fig. 2. Suppose no POR is applied (for simple illustration), so that we must
consider all interleavings of eWorkItem messages. The enabled message value summaries at this
point are the following three summaries, for 𝑖 ∈ {0, 1, 2} for some message ids id𝑖 :

({(⊤, Server)}, {(⊤, eWorkItem)}, {(⊤, reg)}, {(⊤, worker𝑖)}, {(⊤, id𝑖 })

Each summary is a 5-tuple of value summaries for the message sender, event being sent, payload
for the event, message target, and unique identifier of the message. For this application of Schedule
Step, 𝑔 = ⊤ (c8). The resulting value summary𝑚 with all nondeterministic choices (c9) follows:

({(⊤, Server)}, {(⊤, eWorkItem)}, {(⊤, reg)}, {(𝑓𝑖 , worker𝑖)}𝑖=0..2, {(𝑓𝑖 , id𝑖)}𝑖=0..2})

Here, Choice has introduced fresh guard variables 𝑏0, 𝑏1, 𝑏2, and guard formulas 𝑓0 = 𝑏0 ∧ 𝑏1,
𝑓1 = 𝑏0 ∧ ¬𝑏1, and 𝑓2 = ¬𝑏0 to encode the three possible choices. Note that there are three distinct
target and event pairs in𝑚, (worker𝑖 , eWorkItem) for 𝑖 ∈ {0, 1, 2}, which each occur under their
respective guard 𝑓𝑖 (c11). Thus, a lifted event handler for eWorkItem (c12) for each worker𝑖 is run
under the guard 𝑓𝑖 on the message payload reg (c13), yielding a value summary that symbolically
represents all configurations at depth 1 in Fig. 2.

Theorem 5.3 (Efficiency of Schedule Step). For any program 𝑃 with lifted program 𝑃ℓ , consider

a frontier set represented by a configuration value summary 𝑐 that can step to configuration 𝑐′ via
the Schedule Step. Each lifted event handler in 𝑃ℓ is executed at most once in this step. (Proof in the

extended version [Pick et al. 2023b].)

Proof. This follows from (c11) and (c12) in 𝑃ℓ (Fig. 6). Each ℎ𝑖 is a unique event handler, and is
executed at most once in (c12). □

5.3 Exploring a single execution in P
Alg. 1 shows a straightforward procedure for exploring a single execution of a P program based on
the semantics described in §3. We can lift this to value summaries to get an breadth-first explorer
of all executions in a P program. To explore an execution from an initial configuration 𝑐 , in each
iteration of the while loop, the procedure calls ScheduleStep to nondeterministically chooses
an enabled message and takes the step that receives it according to the Scheduling Step rule
from Fig. 3. ScheduleStep, when called on arguments 𝐻, 𝑐 returns a configuration 𝑐′ such that the
judgment 𝐻 ⊢ 𝑐 𝑚

==⇒ 𝑐′ is derivable according to P’s operational semantics for some message𝑚. The
explorer continues until it has fully explored a single execution of program 𝑃 .

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 15

Algorithm 2 Symbolic exploration of all executions.
1: procedure SymExplore(𝑃ℓ)
2: (vs𝑐 , 𝐻, prev) ← (InitialConfig(𝑃ℓ), GetHandlers(𝑃ℓ), {})
3: while bufferNotEmpty(𝑐) do

4: Optional: prev ← vs𝑐 :: prev
5: vs𝑐 ← ScheduleStep(𝐻, notFixedPoint, vs𝑐)
6: vs𝑐 ← (vs𝑐 |¬checkFixed (prev, vs𝑐)) ⊲ checkFixed returns ⊥ unless line 4 enabled

5.4 Symbolic Stateful Explorer
Alg. 2 shows our symbolic stateful explorer, which operates over a lifted program 𝑃ℓ and makes
use of a predicate bufferNotEmpty that is true whenever the given configuration has a nonempty
global buffer under some guard. Ignoring the optional blue parts involving prev, Alg. 2 is a lifting
of Alg. 1 to operate over value summaries rather than single values. It maintains a frontier set of
configurations represented by a value summary vs𝑐 rather than a single configuration as in Alg. 1 ,
where each symbolic step performs exploration by advancing configurations along the frontier by
all possible schedule steps, resulting in a breadth-first search style of exploration.
Recall from the lifted semantics of the Schedule Step, Alg. 2 (line 5) explores all scheduling

choices; given 𝐻,𝑔, 𝑐 , it returns configuration 𝑐′ such that 𝐻,𝑔 ⊢ 𝑐 𝑚
==⇒ 𝑐′ is derivable in the lifted

semantics. Because Alg. 2 operates over value summaries, which are fine-grained (requirement R1)
and exhibit canonicity (requirement R2), it avoids revisiting redundant configurations and retaking
redundant transitions in the same step. Alg. 2 continues (line 3) until there are no enabled messages
in the global buffer under any guard, or, if the check on line 4 is included, until a fixed point is
found (in which case notFixedPoint =⊥). The line 4 can be optionally included to perform a fixed
point check (explained in §5.5). Without it, we assume checkFixed always returns ⊥.
Soundness. We now state a theorem on the correctness of our explorer in Alg. 2 (without line 4).

Theorem 5.4 (Soundness of Symbolic Explorer). For any program 𝑃 with lifted program 𝑃ℓ , if

there exists an execution 𝑐0
𝑚0
==⇒ 𝑐1

𝑚1
==⇒ . . . of 𝑃 , then Alg. 2 (without line 4) on 𝑃ℓ explores an execution

vs𝑐0

vs𝑚0
====⇒ vs𝑐1

vs𝑚1
====⇒ · · · , such that for all 𝑖 , 𝑐𝑖 ∈ Vals(vs𝑐𝑖) and𝑚𝑖 ∈ Vals(vs𝑚𝑖

).

Proof. If for given program 𝑃 with lifted program 𝑃ℓ , there exists an execution 𝑐0
𝑚0
==⇒ 𝑐1

𝑚1
==⇒ . . .,

then Alg. 1 can explore this execution. Alg. 2 without line 4 explores the same executions as Alg. 2
without any of the blue parts. Alg. 2 without any of the blue parts is a lifting of Alg. 1, so from the
properties of lifting, this holds. □

Intuitively, the theorem holds because each configuration in the execution of 𝑃 is a part of some
frontier configuration summary explored in 𝑃ℓ and because Schedule Step runs handlers for all
the enabled messages in the frontier configurations.
Efficient Symbolic Exploration. Because our frontier representations meet requirements R1-R3,
and our lifted semantics based on these representations are efficient (Theorem 5.3), our explorer,
which executes these semantics, avoids redundancies due to identical configurations and overlap-
ping transitions in the frontier.

We now present a precision theorem that relates executions explored by Alg. 2 on a lifted program
with executions of the P program, showing that Alg. 2 does not explore any spurious behaviors.
Informally, this theorem follows from the fact that Alg. 2 starts from a configuration value summary
that are initial configurations of the original P program and that the Schedule Step only executes
event handlers for messages that are enabled in the P program.

, Vol. 1, No. 1, Article . Publication date: June 2023.

16 Lauren Pick, Ankush Desai, and Aarti Gupta

Consider an execution 𝑒 = 𝑐0
𝑚0
==⇒ 𝑐1

𝑚1
==⇒ . . . of a P program.We refer to (𝑐0,𝑚0, 𝑐1), (𝑐1,𝑚1, 𝑐2) . . .

as its execution triple sequence (ets), and do so analogously for executions of lifted P pro-
grams, where the ets is a sequence of triples of value summaries. For a sequence of triples
of value summaries 𝜎ℓ = (vs𝑐0 , vs𝑚0 , vs𝑐0), (vs𝑐1 , vs𝑚1 , vs𝑐2) . . ., we let Vals(𝜎ℓ) be the set of se-
quences (𝑐0,𝑚0, 𝑐1), (𝑐1,𝑚1, 𝑐2) . . ., where (𝑐𝑖 ,𝑚𝑖 , 𝑐𝑖+1) ∈ Vals(vs𝑐𝑖) × Vals(vs𝑚𝑖

) × Vals(vs𝑐𝑖+1) and∧
𝑖 getGuardFor (vs𝑐𝑖 , 𝑐𝑖) ∧ getGuardFor (vs𝑚𝑖

,𝑚𝑖) ∧ getGuardFor (vs𝑐𝑖+1 , 𝑐𝑖+1) is not false. Intuitively,
Vals(𝜎ℓ) is the set of sequences with triples of values that are represented by the summaries in 𝜎ℓ .

Theorem 5.5 (Precision of Symbolic Explorer). For any program 𝑃 with lifted program 𝑃ℓ ,

if Alg. 2 (without line 4) on 𝑃ℓ explores an execution 𝑒ℓ , the ets 𝜎ℓ of triples in 𝑒ℓ is such that for all

𝜎 ∈ Vals(𝜎ℓ), 𝜎 is the ets of an execution in 𝑃 .

Proof. This follows as a consequence of the following lemma. □

Lemma 5.6. For any program 𝑃 with lifted program 𝑃ℓ , if Alg. 2 (without line 4) on 𝑃ℓ explores an

execution 𝑒ℓ with nonempty prefix 𝑒
𝑝

ℓ
, the ets 𝜎

𝑝

ℓ
of triples in 𝑒

𝑝

ℓ
is such that for all 𝜎𝑝 ∈ Vals(𝜎𝑝

ℓ
), 𝜎𝑝

is the ets of an execution in 𝑃 .

Proof. We proceed by induction on the length of 𝜎𝑝

ℓ
. The base case is where the length is

1. In this case, 𝜎𝑝

ℓ
= (vs𝑐0 , vs𝑚0 , vs𝑐𝑖). We have that vs𝑐0 = ℓ (𝑐0) from lifting 𝑃 to 𝑃ℓ and that

{vs𝑐0 } = Vals(ℓ (𝑐0)) from requirements on Vals. From inspecting Schedule Step in Fig. 5, we
can see that the only handlers that can be run are those for the messages enabled in 𝑐0, so any
configuration 𝑐 ∈ Vals(vs𝑐1) must be such that there is a message𝑚 where 𝑐0

𝑚
==⇒ 𝑐 is a step for the

original 𝑃 program. It follows that for any 𝜎𝑝 ∈ Vals(𝜎𝑝

ℓ
), 𝜎𝑝 is an ets of an execution in 𝑃 .

In the inductive case, we consider 𝜎𝑝

ℓ
of length 𝑛 + 1. Let (vs𝑐𝑛 , vs𝑚𝑛

, vs𝑐𝑛+1) be the final triple in
𝜎
𝑝

ℓ
, and let 𝜎𝑛ℓ be the prefix of 𝜎𝑝

ℓ
of length 𝑛. From the inductive hypothesis, we know that any

𝜎𝑛 ∈ Vals(𝜎𝑛ℓ) is an ets of an execution of 𝑃 . It follows that for all 𝑐𝑛 ∈ Vals(vs𝑐𝑛), there exists an
execution of 𝑃 that reaches this configuration. From again inspecting Schedule Step and reasoning
about it similarly to the base case, we can see that for any configuration 𝑐 ∈ Vals(vs𝑐𝑛+1) must be
such that, for any 𝑐𝑛 ∈ Vals(vs𝑐𝑛), there exists𝑚 where 𝑐𝑛

𝑚
==⇒ 𝑐 . It follows that 𝜎𝑝 is an ets of an

execution in 𝑃 . □

Symbolic Exploration Terminates.Alg. 2 (without line 4) terminates for all (liftings of) P systems
with finite executions. Note that if P systems have only finite executions then for every execution,
there is a configuration where none of the event handlers for the enabled messages send new
messages, resulting in a strictly decreasing number of messages in the buffer until the buffer
becomes empty. From Theorem 5.5, every configuration explored and every message explored by
Alg. 2 on the lifted P program have corresponding configurations and messages in an execution of
the P program. In particular, Alg. 2 does not add any spurious messages to the global buffer. During
exploration by Alg. 2, the global buffer will thus also have a decreasing number of messages until it
becomes empty. At this point, the condition in Alg. 2, line 3 will be false, leading to termination.
We illustrate this termination with the following example:

Example 5.7. Consider running Alg. 2 on a configuration value summary 𝑐 with global buffer 𝐵𝑐
containing twomessages with summaries𝑚1,𝑚2, both enabled under the guard𝑔 = 𝐷 (𝑚1) = 𝐷 (𝑚2).
Assume that neither𝑚1 nor𝑚2 has a handler that sends a new message. Alg. 2 will terminate for
this configuration value summary after running Schedule Step twice.
• First Schedule Step.Message value summaries𝑚1,𝑚2 will be in choices.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 17

• The Choose rule introduces a fresh Boolean variable 𝑏0 to distinguish between the choices,
associating 𝑏0 with𝑚1 and ¬𝑏0 with𝑚2.
• (𝑚1 |𝑏0), (𝑚2 |¬𝑏0) are removed from the buffer (c10), leaving𝑚1 in the buffer under guard
𝑔 ∧ ¬𝑏0 and𝑚2 in the buffer under guard 𝑔 ∧ 𝑏0.
• After restricting the resulting buffer with (𝑔 ∧ 𝑏0) ∨ (𝑔 ∧ ¬𝑏0) (c14), it does not change.

• Second Schedule Step. At this point, we still have two enabled messages in the buffer (at the
end of the above step). Let𝑚′1 = (𝑚1 |𝑔 ∧ ¬𝑏0), and𝑚′2 = (𝑚2 |𝑔 ∧ 𝑏0).
• The Choose rule introduces another fresh Boolean variable 𝑏1 to distinguish between these
choices, associating 𝑏1 with𝑚′1 and ¬𝑏1 with𝑚′2.
• (𝑚′1 |𝑏1), (𝑚′2 |¬𝑏1) are removed from the buffer (c10), leaving𝑚′1 in the buffer under guard
𝑔 ∧ ¬𝑏0 ∧ ¬𝑏1 and𝑚′2 in the buffer under guard 𝑔 ∧ 𝑏0 ∧ 𝑏1.
• After restricting the resulting buffer with (𝑔∧¬𝑏0∧𝑏1)∨ (𝑔∧𝑏0∧¬𝑏1) (c14), the guards in the
messages in the buffer both become false. Hence, the buffer is empty, and Alg. 2 terminates.

5.5 Symbolic Exploration with Fixed-point Detection
So far, we have considered systems with only finite executions. If we want to handle systems
with infinite executions, we can still terminate and remain sound if they have fixed points in their
executions, after which point no new behaviors of the system are explored. We can detect fixed
points by finding a case where a configuration in the execution repeats; exploring past this repeated
configuration will only yield more already-seen configurations.
When considering a configuration as repeating, we do not consider exact values of message

ids, as the values of messages’ unique ids do not affect execution. As long as there is a bijection
between the message ids of one configuration and another such that applying this mapping to one
configuration results in the other, we consider them the same. Let sameC be a function over pairs of
configurations (𝑐1, 𝑐2) that returns ⊤ iff there exists a bijection map for 𝑐1 and 𝑐2, where replacing
each message id in 𝑐1 with the result of calling map on it results in a configuration equal to 𝑐2.
If we consider an explorer that explores a single execution at a time, to find fixed points, we

need to detect when there are 𝑐𝑖 , 𝑐𝑘 in the execution so far 𝑐0
𝑚0
==⇒ 𝑐1

𝑚1
==⇒ . . .

𝑚𝑛−1
=====⇒ 𝑐𝑛 , where

sameC (𝑐𝑖 , 𝑐𝑘). This is similar to identifying covered nodes in program unwindings [Henzinger et al.
2002; McMillan 2006]: during exploration, for any node representing a state seen before on the
same path, the node is regarded as covered, and the subtree at the node is no longer explored.

For detecting fixed points of lifted P programs, we can lift this approach to operate over config-
uration value summaries instead and thus apply it to frontiers of configurations. Recall that SCI
Guards symbolically represent sets of sequences of nondeterministic choices that correspond to
paths in the execution tree of the program. Using the the lifted version sameCℓ of sameC, which
operates over configuration value summaries and returns a Boolean value summary, we can thus
detect the guards under which a fixed point has been found. Specifically, for a value summary vs rep-
resenting an earlier frontier and vs𝑐 representing a later one, we use GuardEqalUnder(vs, vs𝑐)
to compute the guard under which configurations in vs𝑐 are repeats of configurations in vs. We
define GuardEqalUnder as 𝜆𝑥,𝑦.getGuardFor (sameCℓ (𝑥,𝑦),⊤), where getGuardFor computes
the guard under which the first argument has the value of the second argument (as described in
§4.3). If GuardEqalUnder(vs, vs𝑐) does not return 𝐷 (vs), then there are paths under which some
configuration in vs𝑐 is not covered by (i.e., not included in) the set of configurations in vs.

Fixed-point detection in the lifted setting thus should check whether the current frontier value
summary vs𝑐 contains only configurations that have occurred in previously-seen frontiers (stored in
the set of value summaries prev, Alg. 2) – if so, then the whole exploration has reached a fixed point.
This can be done as shown in Alg. 3, which computes the SCI Guard checkFixed by performing a

, Vol. 1, No. 1, Article . Publication date: June 2023.

18 Lauren Pick, Ankush Desai, and Aarti Gupta

Algorithm 3 Fixed point detection using value summaries.
1: procedure CheckFixed(prevFrontiers, vs𝑐)
2: coveredGuard =⊥
3: for vs ∈ prevFrontiers do
4: if coveredGuard ≠ 𝐷 (vs𝑐) then coveredGuard ← coveredGuard ∨ GuardEqalUnder(vs, vs𝑐)
5: else return coveredGuard

6: return coveredGuard

disjunction over the set of previous configurations:

checkFixed (prevFrontiers, vs𝑐) =
∨

vs∈prevFrontiers

{
GuardEqalUnder(vs, vs𝑐)

}
Once all configurations in vs𝑐 have been covered (line 5 in Alg. 3), a fixed point has been reached.

If they have not all been covered (checkFixed (prev, vs𝑐) ≠ 𝐷 (vs𝑐)), then exploration should and does
continue (see Alg. 2). This fixed point detection is enabled by the canonicity of value summaries
(requirementR1) and by including all nondeterministic (including scheduling) choices in the guards
(requirement R3). These features allow Alg. 3 to find fixed points that correspond to those in the
original program executions, allowing Alg. 2 to terminate for P programs that contain only finite
executions or those that have fixed points. This is stated in the following theorem, which is a
consequence of Theorem 5.5 and Alg. 3.

Theorem 5.8. For any program 𝑃 with lifted program 𝑃ℓ , if every full execution 𝑐0
𝑚0
==⇒ 𝑐1

𝑚1
==⇒ . . .

of 𝑃 is finite or such that there exists 𝑖, 𝑘 with 𝑖 ≠ 𝑘 , where sameC (𝑐𝑖 , 𝑐𝑘), then when Alg. 2 with line 4

is run on 𝑃ℓ , it terminates.

Proof. Let the effective length of a full execution of 𝑃 be 𝑛 when the execution is 𝑛 steps long,
i.e., 𝑐𝑛 is the last configuration of a full finite execution, or when 𝑛 is the number of steps needed
to reach a fixed point, i.e., where sameC (𝑐𝑖 , 𝑐𝑛) for some 0 ≤ 𝑖 < 𝑛. We assume that 𝑃 is of finite
length or has a fixed point, so every execution of 𝑃 has an effective length. Furthermore, we have
that there is a largest effective length 𝑁 of any full execution of 𝑃 .
We will now show that the loop in Alg. 2 cannot iterate more than 𝑁 times. Let vs𝑐𝑁 be the

configuration that results from the 𝑁 th iteration of the loop on line 3. Let 𝑔𝑓 be the guard under
which vs𝑐𝑁 represents configurations that have finite executions, i.e., for all 𝑐 ∈ (vs𝑐𝑁 |𝑔𝑓), 𝑐’s buffer
is empty. The next Schedule Step taken by Alg. 2 thus cannot be made under any guard in 𝑔𝑓 . Let
𝑔∞ be the guard under which vs𝑐𝑁 represents configurations that have infinite executions. Since
𝑁 is the largest effective length of any execution of 𝑃 , by Lemma 5.9 (below), we have that the
result of checkFixedPoint is 𝑔∞. After restricting by the negation of guard in Alg. 2, vs𝑐 at the end of
the iteration is such that 𝐷 (vs𝑐) = 𝑔𝑓

2. Since we have already established that the buffer is empty
under guard 𝑔𝑓 , Alg. 2 cannot iterate another time since the condition at line 3 is false. □

Lemma 5.9. For any program 𝑃 with lifted program 𝑃ℓ , if there exists an execution 𝑐0
𝑚0
==⇒ 𝑐1

𝑚1
==⇒

. . .
𝑚𝑛−1
=====⇒ 𝑐𝑛

𝑚𝑛

===⇒ . . . of 𝑃 where 𝑛 is the smallest index such that sameC (𝑐𝑛, 𝑐𝑘) for 0 ≤ 𝑘 < 𝑛, then

for the execution vs𝑐0

vs𝑚0
====⇒ vs𝑐1

vs𝑚1
====⇒ · · ·

vs𝑚𝑛−1
======⇒ vs𝑐𝑛

vs𝑚𝑛

====⇒ · · · explored by Alg. 2 with line 4 on

𝑃ℓ , the loop iterates at least 𝑛 times and on the 𝑛th iteration of the loop on line 3 of Alg. 2, checkFixed

computes a guard formula 𝑓 such that {𝑐𝑘 } ∈ Vals((vs𝑛 |𝑑)) for a disjunct 𝑑 in 𝑓 .

2Note that 𝑔𝑓 ∨ 𝑔∞ = 𝐷 (vs𝑐) .

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 19

Proof. (Sketch) We can show by induction that for any length 𝑖 , for an execution of 𝑖 transitions
of 𝑃 , if no pair of configurations in the first 𝑖 are sameC

3, then for an execution of Alg. 2 on 𝑃ℓ ,
the 𝑖 th call to ScheduleStep on line 5 yields a value summary vs𝑐 such that the 𝑖 th configuration
of 𝑃 is in Vals(vs𝑐). It follows that in the 𝑛th iteration of the loop on line 3 (Alg. 2), after running
ScheduleStep, 𝑐𝑛 ∈ Vals(vs𝑐). Alg. 2 then computes checkFixed on ([vs𝑛−1, . . . , vs1, vs0], vs𝑐). In
Alg. 3, GuardEqalUnder is invoked on each pair of vs 𝑗 ∈ [vs𝑛−1, . . . , vs1, vs0] and vs𝑐 . From the
definition of GuardEqalUnder, we have that GuardEqalUnder(vs𝑘 , vs𝑛) results in formula 𝑑
for which {𝑐𝑘 } = Vals((vs𝑛 |𝑑)). This formula 𝑑 is disjoined to the current coveredGuard formula
(Alg. 3, line 4) and is a disjunct in the final coverdGuard formula 𝑓 returned by Alg. 3. □

In practice, the cost of fixed-point detection increases as greater depths are explored, since more
BDD variables are introduced and prev grows larger. As a result, we use the fixed-point check
in practice mostly when the set of possible configurations is small so that convergence is likely.
Abstractions (described in §6.1) can help ensure faster convergence.

6 SYMBOLIC EXPLORATIONWITH ABSTRACTIONS AND REDUCTIONS
6.1 Abstract Value Summaries
Our approach can employ abstractions [Cousot and Cousot 1977; Cousot et al. 2013; Fähndrich and
Logozzo 2010; Flanagan and Qadeer 2002; Graf and Saïdi 1997] to convert large or infinite number
of concrete configurations into a smaller and finite number of abstract configurations. As noted
previously [Sen et al. 2015], one merit of a value summary representation is the ability to replace
the value component of a primitive value summary with any representation – concrete values that
occur when executing the program or abstractions of sets of such values.

Let C be a set of concrete values and A be an abstract set for these values, such that there exists a
map 𝛼 : P(C) → A that maps each element of P(C) to the element of A that abstracts it. We refer
to value summaries whose primitive value summaries’ value components are all in C as concrete
value summaries and those whose value components are all in A as abstract value summaries.
Abstract Values. It is straightforward to abstract a concrete value summary to an abstract value
summary by traversing the recursive structure of a given value summary and, for each value
component 𝑐 , applying the map 𝛼 to the singleton set {𝑐}.
Abstract Semantics. The semantics of any program defined over concrete value summaries can be
lifted to work over the abstract domains in a manner similar to other settings. The semantics are as
in §5.1, except that each concrete value (resp. value summary) is replaced by an abstract value (resp.
abstract value summary). While we do not consider this in-depth here, for increased precision, we
can perform special handling for branches on nondeterministic values whose nondeterminism is
captured in the abstraction rather than in SCI Guards. The next section provides a case study on
using abstractions to verify infinite-state distributed systems.

6.2 Partial-Order and Other Reductions as Filters
To extend our symbolic explorer with capabilities to perform reduction, we leverage Filters functions
(C → P(M) → P(M)). Each filter, when applied to a configuration and a set of enabled messages,
returns a subset of the enabled messages that can be scheduled at that step.
Using Filters. Let ApplyFilters({𝑓0, . . . , 𝑓𝑛}, 𝑐) = (𝑓0𝑐) ◦ · · · ◦ (𝑓𝑛𝑐) ({𝑦 | enabled(𝑚,𝑐)}), where
◦ denotes function composition. This function can be used to apply a set of Filters to the set
of messages in a given configuration. Filters can be incorporated into the lifted P semantics by
amending the Schedule Step rule. Filters should be added to the context of the judgment and the
premise𝑚 ∈ ℓ (𝜆𝑥 .ApplyFilters(Filters, 𝑥)) (𝑐) should be added to the rule.
3Note that an execution with 𝑖 transitions has 𝑖 + 1 configurations.

, Vol. 1, No. 1, Article . Publication date: June 2023.

20 Lauren Pick, Ankush Desai, and Aarti Gupta

Reductions and pruning.We can implement several reductions using filters. Left movers from
Lipton’s theory of reductions [Lipton 1975] can be implemented with a function LM that guarantees
that left movers are scheduled before any other enabled messages: LM (𝑐) (ms) returns {left} for
some left ∈ ms if left is a left mover and otherwise returns ms. Persistent-set-based POR can be
implemented with a filter function that removes messages outside of the persistent set. In §8, we
make use of a persistent-based POR called Pred that we developed for P; the filter function is given
by 𝜆𝑐.𝜆ms.{𝑚 ∈ ms | ∀𝑚′ ∈ 𝐵𝑐 .𝑚′ ≮𝑐 𝑚}. This function removes from the enabled set all messages
for which another message in the global message buffer is lower according to the < relation, an
extension of send-order (𝑆𝑂𝑐) with the happens-before relation. More details can be found in
Appendix D. Monotonic POR [Kahlon et al. 2009] can be implemented similarly to persistent-
set-based POR, and a variant of sleep-set-based POR [Godefroid 1990] can be implemented by
using information across different executions being explored. We can also use filtering functions to
implement sound prunings based on external analyses, e.g., of symmetries in the system.

7 ILLUSTRATIVE CASE STUDY: ABSTRACTIONS AND FIXED POINTS
We now show an example application where our symbolic stateful explorer uses abstractions and
the fixed-point check to handle a program with an infinite state space and nonterminating runs.
Consider the example program shown in Fig. 7. The TestKVStore machine is initialized with
nondeterministic values for an instance of a distributed key-value store implementation kvStore,
a key k and a value v (lines 2-3). The initialization procedure for kvStore (not shown) performs a
nondeterministic number of writes of random values to random keys. TestKVStore first writes the
value v to k in the kvStore by initiating a write (line 6). Then, it issues a nondeterministic (possibly
infinite) number of write transactions to kvStore (line 13). Each such write is of a nondeterministic
value to a nondeterministic key not equal to k, and is performed only after the previous write has
finished. TestKVStore then finally (line 25) issues a read for k. It asserts (line 28) that the result of
this read transaction is equal to the initially-written value v.

Fig. 7. Key-value store test client

The choose construct (denoted by *) is used
(lines 12, 14) to choose a type-appropriate non-
deterministic value. *Except (lines 14) chooses
a nondeterministic value guaranteed to be not
equal to its argument. If the set of tKeys or
tVals is infinite, our system is infinite-state.
Suppose KVStore is implemented using a

distributed commit protocol in which replica
nodes each have a map store from keys to val-
ues to maintain the state of the key-value store.
We will show how to use our symbolic explo-
ration algorithm and appropriate abstractions
to prove the following invariants:
Safety Invariant: The assertion on line 28
always holds.
Data Structure Invariant: When
TestKVStore is not in state Init, store
in each replica always map the key k to value
v. Note that the data structure invariant is a
global property about the data structures in
any node of the system and the state of the

TestKVStore.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 21

Config. Abstract Value Summary (partial)

𝑐0

store {¬EqKey ↦→ { (𝑔,⊤)}, EqKey ↦→ { (𝑔,⊤)}}
TestKVStore (⊤, Init)
checkFixed ⊥

𝑐1

store {¬EqKey ↦→ { (𝑔,⊤)}, EqKey ↦→ { (⊤, EqVal) } }
TestKVStore (⊤, PerformNotKWrites)
checkFixed ⊥

𝑐2

store {¬EqKey ↦→ { (𝑔 ∨ 𝑏0,⊤)}, EqKey ↦→ { (⊤, EqVal) } }
TestKVStore { (𝑏0, PerformNotKWrites), (¬𝑏0, CheckKey) }
checkFixed 𝑔 ∧ 𝑏0

𝑐3

store {¬EqKey ↦→ { (𝑔 ∨ 𝑏0 ∨ 𝑏1,⊤)}, EqKey ↦→ { (⊤, EqVal) } }
TestKVStore {𝑏0 ∧ (𝑔 ∨ 𝑏1), PerformNotKWrites), (¬𝑏0 ∨ ¬𝑔 ∧ ¬𝑏1, CheckKey) }
checkFixed (𝑏0 ∧ (𝑔 ∨ 𝑏1)) ∨ ¬𝑏0

𝑐4

store {¬EqKey ↦→ { (𝑔 ∨ 𝑏0 ∨ 𝑏1,⊤)}, EqKey ↦→ { (⊤, EqVal) } }
TestKVStore {𝑏0 ∧ (𝑔 ∨ 𝑏1), PerformNotKWrites), (¬𝑏0 ∨ ¬𝑔 ∧ ¬𝑏1, CheckKey) }
checkFixed ⊤

Table 1. Symbolic exploration: (Partial) Abstract Value Summaries for Configurations

Abstractions.We handle data nondeterminism by abstracting via the following predicates:
- EqKey, indicates whether or not a key is equal to the distinguished key 𝑘
- EqVal, indicates whether or not a value is equal to the distinguished value 𝑣
After this abstraction, the only remaining nondeterministic call in Fig. 7 is the call to *.
Symbolic Exploration with Abstract Value Summaries.We now focus on some components
of the abstract value summary as they change during exploration. For the 𝑖 th message sent by
TestKVStore, let 𝑐𝑖 be the configuration after response for the corresponding transaction has
been processed. That is, if the message was a eWriteTransReq (resp. eReadTransReq), then the
corresponding eWriteTransRsp (resp. eReadTransRsp) has been sent by kvStore and received by
TestKVStore. For each configuration 𝑐𝑖 , Table 1 shows (1) the map store in the replica machines
of the implementation, (2) the machine state of TestKVStore after each 𝑐𝑖 , and (3) the result of
calling checkFixed for 𝑐𝑖 .
Note that the store, TestKVStore machine state, and global buffer are the only components

of the configuration of significance involved in computing checkFixed, since the remaining con-
figuration components will all be the same (i.e., GuardEqalUnder would return ⊤) for these
configurations. We do not show the global buffer because the results for GuardEqalUnder for it
and the TestKVStore state are always the same. We also show only a single store map because all
replicas should have the same abstract value summary for their local store in these configurations.
Exploration begins with 𝑐0, where store is empty under SCI Guard formula ¬𝑔 and otherwise
nondeterministically maps any key to any value. After processing the write transaction on line 6, it
arrives at 𝑐1. We detail how the exploration arrives at 𝑐2 from 𝑐1:
When encountering the nondeterministic choice on line 12 after reaching 𝑐1, the Choose rule

(Fig. 5.1) introduces guard 𝑏0, which is used to indicate that the then-branch is taken in the
nondeterministic branch in state PerformNotKWrites. When 𝑏0 holds, the second message sent
to kvStore is a eWriteTransReq sent in state PerformNotKWrites, and when it does not, it is
eReadTransReq sent in state CheckKey, as indicated in the TestKVStore state component for 𝑐2
shown in Table 1. The processing of the write on line 13 under guard 𝑏0 results in the store maps
mapping keys other than k (abstracted as ¬EqKey) to any key (abstracted as ⊤). This is reflected in
the store component for 𝑐2 in Table 1.

At this point, the explorer will use checkFixed to detect guards under which configurations have
been covered. Configuration value summaries 𝑐2 and 𝑐0 are equal only under guard ⊥, but 𝑐2 and 𝑐1

, Vol. 1, No. 1, Article . Publication date: June 2023.

22 Lauren Pick, Ankush Desai, and Aarti Gupta

are equal under guard 𝑔∧𝑏0: i.e., (𝑐2 |𝑔∧𝑏0) = (𝑐1 |𝑔∧𝑏0). The covered configurations are thus those
in (𝑐2 |𝑔 ∧ 𝑏0), which specify those configurations under which the abstract store maps ≠ EqKey

to ⊤ and the abstract TestKVStore is in state PerformNotKWrites. Because these configurations
are covered, we do not continue exploration from these configurations. The explorer thus advances
configurations under guard ¬𝑔 ∨ ¬𝑏0 to get to 𝑐3.

The third and fourth messages are the same as the second and give us configurations such that
𝑐4 = 𝑐3. checkFixed returns ⊤ since all configurations represented by 𝑐4 are now covered, and
exploration concludes since a fixed point has been reached.
Deriving Invariants. At this point, since the assertion in the TestClient state has not been
violated, we also have shown that the safety property holds. We can also use the abstract value
summaries to derive invariants such as the data structure invariant described above; if the invariant
holds for each visited configuration up until we reach a fixed point, then it is inductive. For all
configurations throughout the execution, calling getGuardFor on the TestKVStore state and the
value Init yields either ⊤ (for 𝑐0) or ⊥ (for 𝑐𝑖 , 𝑖 > 0). We restrict store by the negation of this
guard for each visited configuration 𝑐𝑖 to check the data structure invariant. In particular, we have
(store| ⊥) = {} for 𝑐0, showing that there is no value for store to consider in 𝑐0. For each 𝑐𝑖 for
𝑖 > 0, we have that (store|⊤) = {¬EqKey ↦→ {(𝜙𝑖 ,⊤)}, EqKey ↦→ {(⊤, EqVal)}} for some guard
𝜙𝑖 . None of the restricted store value summaries ever map EqKey to an abstract value summary
containing a guarded value (𝑔,𝜓) for 𝜓 ⇒ ¬EqVal, so it is indeed an invariant that whenever
TestKVStore is not in state Init, then store maps distinguished key 𝑘 to distinguished value 𝑣 .

8 EVALUATION
Implementation.We implemented our approach in the Psym tool as an extension of the open-
source P framework. Our implementation consists of three parts: (1) a Java library that implements
a symbolic runtime with support for creating and manipulating value summaries (as described in
§4.3); (2) a P compiler extension to generate Java code that symbolically represents lifted P program
using the value summary implementations in the symbolic runtime (thus lifting the P program
over value summaries as described in §5.1); and finally, (3) a systematic explorer that implements
Alg. 2. Guards in value summaries are represented using the PJBDD library [Beyer et al. 2021].
Unless otherwise stated, experiments were run on a Linux machine with Intel(R) Xeon(R) CPU @
2.30GHz, 16 cores, and 200GB main memory.
Research Questions. Our evaluation seeks to answer the following research questions:
Q1.How does Psym compare against a state-of-the-art model checker for verifying distributed protocols?

Q2. Does Psym succeed in verifying P models from previous papers?

Q3. Does Psym scale to verify distributed protocols from real-world industrial systems created by

developers (not by the authors)?

Q4. Does Psym succeed in verifying infinite state systems and how does it compare against other

approaches for systematic exploration?

We use the Pred partial-order reduction in Psym in all experiments except in Q1.
Characteristics of models. Other than TLA+ models (in §8.1 for Q1), each P model we consider
has all types of nondeterminism: asynchronous message interleaving, dynamic machine creations,
and data or input nondeterminism (e.g., node failures). All the models are closed and have a finite
number of configurations, i.e., for each system, there are a finite number of processes, and the
system takes finite inputs. Also, for each model (other than those in §8.4 for Q4, which have infinite
executions), every execution is terminating and the total number of executions is finite.

8.1 Q1: Comparison with TLC (Model Checker for TLA+)
P no longer supports the Zing [Andrews et al. 2004] model checking backend used in previous
approaches [Desai et al. 2013b]; instead it relies on Coyote [Microsoft Coyote 2022] for randomized

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 23

Table 2. Comparison between TLC and Psym, with 12GB memory (max) and 15-minute timeout.

Benchmark TLC Psym Benchmark TLC Psym
Chang-Roberts (N=5) 7s 1s 2PCwithBTM 17s 10s

HLC (MaxT=3) 18s 3s BenOr (MaxRound = 2) 24s 7s

HLC (MaxT=4) 24s 8s BenOr (MaxRound = 3) 1m20s 1m11s

HLC (MaxT=5) 42s 24s Paxos (simple, STOP=3, M=2, MAXB=3) 3m20s 3m21s
Streamlet Blockchain Timeout 5s Paxos (full, STOP=1, M=9, MAXB=10) Timeout 6m54s

testing of P models and has no support for verification. To demonstrate the efficacy of our approach,
we would like to compare against a state-of-the-art model checker for distributed systems (not
built by the authors). TLA+ [Lamport 2002] is a popular modeling language and is a standard in
industry [Newcombe 2014] and academia [TLA+ 2023] for model-checking distributed protocols.
TLC [Yu et al. 1999] is an explicit state model checker for TLA+ models and has evolved over the
years with optimizations to scale model checking to complex models.
To evaluate the efficacy of our approach, we compare Psym with TLC on several open-source

TLA+ models, which we manually translated into P programs. Note that P and TLA+ support
different models of computation; our objective with this experiment is to compare the search
exploration techniques implemented by Psym and TLC. We confirmed through manual review that
the P models have same nondeterminism as allowed in the TLA+ models. These models include the
following: Hybrid Logical Clocks [Demirbas 2017a; Kulkarni et al. 2014] with a parameterizable
maximum time (MaxT); the decentralized consensus algorithm proposed by Ben-Or [Ben-Or 1983;
Demirbas 2019]; a version of two-phase commit with a transaction manager [Demirbas 2017b,c]; a
simplified version and the full version of the Flexible Paxos distributed consensus protocol [Howard
et al. 2016], for which the open-source TLA+ model has four proposers [Howard et al. 2022]
and a parameterizable number of values to reach consensus on (STOP), number of proposers (M),
and maximum number of ballots (MAXB); the Streamlet blockchain protocol [Chan and Shi 2020];
the Chang-Roberts ring leader election algorithm [Chang and Roberts 1979; TLA+ 2021] with a
parameterizable number of nodes (N). We compare Psym against TLC when run with 1 worker
thread (Psym is single-threaded), and limit both tools to 12GB memory. The results are shown
in Table 2; experiments were run on a Macbook Pro with an M1 processor, 16GB RAM with a
15-minute timeout.

For a fair comparison to TLC (which does not implement POR), we do not use the Pred POR
in Psym for these experiments – thus, our results are due to use of symbolic representations and
targeting additional redundancies due to overlapping transitions. On the other hand, TLC uses state
hashing to avoid re-exploring from previously-seen configurations. In contrast, we do not currently
use any state hashing in Psym (and plan to implement it in future work). In Psym, merging allows
us to avoid re-exploration from the same configurations in the same frontier.

For most benchmarks, there are many distinct transitions that are overlapping, leading Psym to
outperform TLC. In both Paxos and Streamlet, there are many instances of the same process that
perform the same or similar computations (e.g., finding the maximal notarized chain in Streamlet).
Psym was able to take advantage of these overlapping transitions to complete verification, whereas
TLC timed out. For the remaining benchmarks, Psym showed a runtime improvement of 2.5X on
average (geometric mean) compared to TLC. However, some benchmarks have configurations that
are the same at different depths in the execution tree, where Psym may perform redundant work.

8.2 Q2: Evaluation on P Programs from Previous Papers
We evaluated Psym on common distributed protocols available in the P GitHub repository, used as
benchmarks in previous publications [Deligiannis et al. 2015; Desai et al. 2015; Liu et al. 2019]. These
are: (consensus) Two-Phase Commit [Gray and Lamport 2006] and Paxos [Lamport 2001]; (leader

, Vol. 1, No. 1, Article . Publication date: June 2023.

24 Lauren Pick, Ankush Desai, and Aarti Gupta

Table 3. Benchmarking Psym on standard distributed protocols

Benchmark LOC (P) #M Time #Steps w/ (and w/o) overlapping transitions Mem.
Token Ring 164 5 2s 143 (243) 27MB

BoundedAsync 96 4 11s 534 (534) 45MB
German 283 5 44s 244 (300) 860MB

Failure Detector 189 7 38s 277 (435) 1.4GB
Two-Phase Commit 284 7 57m22s 627 (2643) 13GB

Paxos 241 8 2h7s 931 (2143) 18GB

election) Token Ring [Lynch 1996], Failure Detector, and Bounded broadcast [Liu et al. 2019]; and
German cache coherence [Pnueli et al. 2001]. Our Two-Phase Commit benchmark has two clients
and two participants, where each client tries to perform two read and two write transactions; Paxos
runs 4 rounds and has two proposers, which each propose a single value, and three acceptors. The
Token Ring is of size 4. We model failures for these benchmark. While some of these benchmarks
(e.g., German, Token Ring) exhibit symmetry, we did not use symmetry-based pruning filters.

Table 3 shows the results of running Psym on these benchmarks, where we report the number of
lines of P code (LoC), the number of concurrently executing state machines (#M), the time taken
(Time), and the max memory consumed (Mem). The #Steps column reports the number of (lifted)
event handler invocations made during exploration, where the number in parentheses reports the
number of event handler invocations that would have occurred without handling messages with
the same event handlers in one step. This demonstrates the benefits from identifying overlapping
transitions. For example, in Two-Phase Commit, many different participant machines send messages
to a single coordinator machine. Because all participants send only two kinds of messages to the
coordinator, only (at most) two lifted event handler executions are needed to handle the messages
sent to the coordinator. We found that in most of these distributed protocols, the configurations
reached after exploring different interleavings of messages, still have many equivalent components,
leading to efficient handling of redundancies in overlapping transitions.

8.3 Q3: Verifying Industrial Case Studies: Distributed Storage and Database Protocols
We used Psym to verify some real-world industrial distributed protocols from the storage, IoT, and
database systems at Amazon Web Services (AWS); these protocol models were implemented by
expert engineers in AWS, and have the characteristics described earlier with failures and asynchrony.
We only applied Psym and helped developers identify opportunities to apply sound reductions.
We used Psym to verify the correctness of four industrial case studies: (1) a distributed protocol
used at Amazon S3 for reliable data migration; (2) a distributed protocol used at Amazon S3 for
durable data backup; (3) The AWS Over the Air (OTA) protocol used to update an IoT device
firmware reliably and securely; and (4) a multi-region distributed transaction conflict resolution
protocol used for a database service at AWS. We asserted safety properties such as consistency
for the distributed transaction conflict resolution protocol and reliable file transfer for OTA. Psym
verified finite instances of these models, where other techniques we tried failed (see discussion
in §8.4)). Finite instances came from bounding the number of processes and inputs but not depth.
For example, Psym verified the conflict resolution protocol for 2 geographical regions, each with 3
replicas, and 2 clients concurrently sending 3 non-deterministic commands (insert, delete, update)
to any region.

Table 4 reports the results of running Psym on these benchmarks both with and without additional
reductions. Psymwas able to successfully verify the correctness of these benchmarks, demonstrating
that it can be used as a verifier for realistic systems. These results also demonstrates the effectiveness
of incorporating custom filters into Psym. Specifically, the OTA protocol makes several synchronous
interactions with other components, and the response messages for these interactions are left movers

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 25

Table 4. Verification of industrial case studies using Psym (L: Lipton reduction, S: Symmetry based pruning)

Case Study LOC #M Psym Psym with custom filters
(P) Time # Step (Mem.) Time # Step (Mem.) Filter

OTA 1103 14 33m23s 678 (33GB) 15m6s 422 (5.3GB) L
Data migration 959 22 6h23m11s 5332 (48GB) 2h23s 2318 (15GB) L, S
Data replication 1459 16 8h4m1s 8132 (59GB) 3h1m14s 3118 (16GB) L, S

Conflict resolution 1202 13 7h22m1s 2182 (122GB) 5h1m 1164 (44GB) L, S

Table 5. Benchmarking Psym with abstractions

Benchmark LOC (P) #M Time # Step Mem.
Two-Phase Commit(2) 292 5 <1s 48 (48) 8.1
Two-Phase Commit(4) 292 7 <1s 80 (80) 8.7MB
Two-Phase Commit(6) 292 9 1s 112 (112) 9MB

Paxos(3) 421 6 12s 142 (142) 123.3MB
Paxos(5) 421 8 3h18s 145 (145) 18GB

based on Lipton’s theory of reductions [Lipton 1975]. The data migration and replication protocols
use a centralized locking service to gain consensus, and the release message from this service is
also a left mover. We also found that certain operations (messages) can be safely pruned because
of symmetry. Thus, adding Lipton’s left mover (L) and symmetry-based pruning (S) filters helped
reduce the number of interleavings, which led to smaller sizes of the representations and hence
faster verification times. The ability of Psym to integrate these filters proved effective.

8.4 Q4: Verifying Infinite-state Systems and Comparison with Other Approaches
Infinite-state systems. Here we consider evaluating Psym on variations of the case study in
§7 using the abstractions described. We consider a two implementations of the key-value store:
one based on Two-Phase-Commit (modeled without failtures) and another based on the Paxos
consensus protocol. We evaluate Psym with both kinds of implementation for several instance
sizes of the protocols. Two-Phase Commit(𝑛) denotes that there are 𝑛 participant machines in
the protocol. Paxos(𝑛) denotes that there are 𝑛 acceptor nodes. Table 5 reports the result of this
evaluation. We can see that our abstractions effectively finitize the infinite state space, thereby
allowing Psym to converge on these benchmarks by using our fixed-point detection method.

The problem of systematic exploration of distributed systems behaviors is a well-studied problem
with several different directions. In the interest of positioning Psym among closely related techniques,
we briefly summarize our observations and experience with other tools.
Comparison with bounded model checking. Before developing our proposed approach, we
experimented with building Psym using bounded model checking [Biere et al. 1999]. We hand-coded
the Two-Phase Commit protocol in the open-source tools UCLID5 [Seshia and Subramanyan 2018]
and JKind [Gacek et al. 2018]. Both tools failed to verify Two-Phase Commit within 2 hours. While
Psym uses a large memory footprint typical for BDD-based tools, we are encouraged that Psym is
able to successfully complete verification on many challenging benchmark examples, with sizes that
exceed those used to demonstrate successful prior tools like I4 or DistAI. For verification/inference
techniques that rely on systematic exploration or model checking of small or finitized instances of
a particular distributed system, using Psym can potentially help to improve their effectiveness.
BDD vs. SAT (Memory vs. Time tradeoff). BDD-based and SAT/SMT-based verification engines
often have complementary strengths – e.g., many commercial hardware model checkers have
both engines. BDDs are especially well-suited for iterative computations over sets of states, while
SAT/SMT solvers work better in non-iterative settings where state sets are not needed, e.g., when
checking verification conditions (for inductiveness, safety, etc.). We tried using a SAT solver in
place of BDDs for manipulating guards in value summaries. As expected, the memory footprint was

, Vol. 1, No. 1, Article . Publication date: June 2023.

26 Lauren Pick, Ankush Desai, and Aarti Gupta

Table 6. Comparison with ODPOR (✖: failed to finish in 1 hour, *: results reported from [Abdulla et al. 2014],

Erlang source not available, N/A: MPOR filter not used)

Benchmark #M ODPOR Psym Psym with MPOR Filter
Time Time #Step (Mem.) Time #Step (Mem.)

lastzero(5) 13 32s∗ 1m33s 371 (3.6GB) 3s 134 (20MB)
lastzero(10) 23 27.61s∗ ✖ 283 (9.5GB) 12s 370 (180MB)
lastzero(15) 33 30m13s∗ ✖ 317 (8.4GB) 73s 705 (1GB)
counter(5) 6 47s 1s 11 (8.1MB) N/A N/A
counter(10) 11 34m15s 7.6s 21 (200MB) N/A N/A
counter(15) 16 ✖ 5m17s 122 (13GB) N/A N/A

much smaller, but for all the benchmarks reported in this paper, its runtime performance was orders
of magnitude worse than with BDDs. Too many SAT queries were needed (even with techniques
like FRAIGs [Mishchenko et al. 2005]); the canonicity of BDDs allows for efficient querying.
Comparison with Dynamic POR. We compare Psym with Concuerror, a state-of-the-art model
checker for Erlang that uses optimal dynamic partial order reduction (ODPOR) [Abdulla et al. 2014;
Aronis et al. 2018]. Note that ODPOR does not compute sets of reachable configurations, but a
comparison is of interest because our Psym does not use dynamic POR. We consider two synthetic
benchmarks: the lastzero example from [Abdulla et al. 2014] and a modified version (counter)
of the example in Fig. 1. Table 6 reports timing results for Concuerror and Psym. We also report the
steps taken and max memory used by Psym (not reported by Concuerror). For lastzero, we report
the results from the ODPOR paper which were obtained on an i7-3770 CPU (3.40 GHz), 16GB of
RAM [Abdulla et al. 2014]. All other experiments were run on a Macbook Pro with an M1 processor,
16GB RAM. For Psym, we also implemented a monotonic POR [Kahlon et al. 2009] (MPOR) filter
for lastzero, enabling Psym to verify the benchmark efficiently. The results suggest that even
without ODPOR, MPOR can help Psym scale.

9 RELATEDWORK
Verification and Invariant Discovery for Distributed Systems.Many approaches use deductive
proof techniques to formally verify distributed systems [Hawblitzel et al. 2015; Padon et al. 2016;
Wilcox et al. 2015]. They can prove correctness of distributed systems for unbounded inputs but
require users to provide complex inductive invariants.

Model checking provides an algorithmic approach for verifying either a model (e.g., SPIN [Holz-
mann 1997], Zing [Andrews et al. 2004], TLC [Yu et al. 1999]) or an implementation (e.g.,
Verisoft [Godefroid 1997], JPF [Visser and Mehlitz 2005], CHESS [Musuvathi and Qadeer 2007]), but
suffers from state space explosion. Several sequentialization techniques [La Torre et al. 2009; Lal and
Reps 2008] reduce verification of concurrent or distributed programs to verification of sequential
programs, but the resulting sequentialized programs are highly nondeterministic. State caching
(used e.g., in TLC [Yu et al. 1999]) addresses some scalability issues by avoiding re-exploration from
redundant configurations. We provide an approach that additionally avoids repeating redundant
computations in updates due to overlapping transitions.

Recent efforts in automated invariant discovery for distributed protocols generalize from small
instances of protocols to learn invariants for all instance sizes [Ma et al. 2019; Yao et al. 2021].
Our explorer could be used as a subprocedure in such techniques e.g., as a model-checker for a
technique such as in I4 [Ma et al. 2019], or as a systematic explorer for a data-driven technique such
as in DistAI [Yao et al. 2021]. It may also be used to generate additional invariants as candidates for
generalization in either kind of technique.
Symbolic and Abstraction Techniques. Symbolic model checking [Burch et al. 1992] has been
successfully applied to many problems but does not scale well when applied to concurrent or

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 27

distributed systems due to state space explosion. Recent efforts include a symbolic model checker
for TLA+ [Konnov et al. 2019], which improves scalability of invariant checking but does not show
clear advantages over TLC for model checking safety properties; it is much slower than TLC on
distributed benchmarks such as two-phase commit and Paxos. (We thus compared only against
TLC in our experiments.)

Symbolic and concolic execution have been somewhat effective in addressing state space explo-
sion due to input and control nondeterminism by focusing on one control path at a time [Cadar et al.
2008; Farzan et al. 2013; Godefroid et al. 2005; Sen and Agha 2006b]. However, this leads to path
explosion for reasonable coverage. Several techniques have been proposed to handle path explosion
by state merging [Anand et al. 2008; Kuznetsov et al. 2012; Sen et al. 2015; Torlak and Bodík 2014].
We follow in the steps of MultiSE [Sen et al. 2015], extending their guards to handle scheduling
choices as well as adapting their symbolic representation. To the best of our knowledge, no existing
approaches have proposed handling scheduling choices symbolically or merge state in distributed

systems as we do. One work [Sen and Agha 2006a] combines concolic execution with POR and
uses backtracking to explore both different scheduling choices and control-flow paths but does not
involve a symbolic encoding of scheduling choices. A more recent effort [Schemmel et al. 2020]
also combines POR and symbolic execution but also does not represent scheduling nondeterminism
symbolically. Our fixed point check is an adaptation of an existing covering approach for model
checking [McMillan 2006] to work on configuration value summaries.

Abstraction has been widely applied in many domains to help combat state-space explosion and
finitize infinite-state systems [Cousot and Cousot 1977; Cousot et al. 2013; Fähndrich and Logozzo
2010; Flanagan and Qadeer 2002; Graf and Saïdi 1997]. We leverage prior work on abstraction to
achieve similar benefits, allowing our technique to scale even further.
POR and Symmetry Reductions. (Dynamic) POR [Abdulla et al. 2014; Aronis et al. 2018; Flanagan
andGodefroid 2005; Kahlon et al. 2009; Nguyen et al. 2018; Peled 2018] and symmetry reduction [Iosif
2002] address state space explosion problem by taking a control-centric view during the exploration
of a distributed system’s state space. They do not consider the state of the system during exploration.

Our approach provides a complementary data-centric view that allows our explorer to recognize
not only redundant interleavings (as in POR) and configurations (as in state caching [Holzmann
1997]) but also redundancies in overlapping transitions. As seen previously, we can integrate POR
and symmetry reductions with our proposed techniques, but there are limitations in combining
our approach with Dynamic POR techniques [Abdulla et al. 2014; Aronis et al. 2018; Flanagan and
Godefroid 2005] that rely on a depth-first order of exploration.
Systematic Testing ofDistributed Systems. Systematic testing has enjoyed success in uncovering
successfully uncovered deep, hard-to-find bugs in distributed systems. Systematic testing techniques
often use prioritized search [Deligiannis et al. 2015; Desai et al. 2015; Leesatapornwongsa et al.
2014; Mukherjee et al. 2020] and stratified random testing [Deligiannis et al. 2015; Jepsen 2021;
Killian et al. 2007; Majumdar and Niksic 2017; Ozkan et al. 2018] to guide exploration . They
typically do not aim to exhaustively explore behaviors as we do here. For P programs in particular,
researchers have proposed bounded exploration based on delay-bounding [Desai et al. 2015] and
reductions based on almost-synchronous invariants [Desai et al. 2014]; our work is the first to use
POR specific to P semantics (in the form of Pred). Recent work [Liu et al. 2019] presents sound
partial abstract transformers for verification of P programs. This approach, like ours, computes
fixed points over abstract states, but it does not use a fine-grained configuration representation
nor identify overlapping transitions. Furthermore, it is unclear how to combine POR with this
approach.

, Vol. 1, No. 1, Article . Publication date: June 2023.

28 Lauren Pick, Ankush Desai, and Aarti Gupta

10 CONCLUSIONS
We presented a novel approach for scalable stateful exploration of distributed systems implemented
in P. Our approach leverages a novel canonical fine-grained symbolic representation of distributed
system configurations, yielding an explorer that implicitly recognizes equivalent configurations and
reduces redundancies due to overlapping transitions. Our explorer is designed so that scalability can
be further increased via abstractions and various reductions. Evaluation shows that our tool Psym
outperforms a state-of-the-art stateful explorer and can successfully verify P models of common
distributed protocols and challenging industrial case studies. Future work includes the use of our
approach in invariant discovery techniques and the implementation of state caching in Psym.

ACKNOWLEDGMENTS
Wewould like to thank AmanGoel, Cambridge Yang,William Brandon, and Eric Gewho contributed
to Psym as well as our anonymous reviewers for their valuable suggestions. This workwas supported
in part by the National Science Foundation under Grant # 2127309 to the Computing Research
Association for the CIFellows project, NSF-1837030, and an Amazon research award. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation or the Computing
Research Association.

AVAILABILITY
The version of Psym used to produce the results in the paper is available on Zenodo along with
instructions on how to run some of the experiments in the paper [Pick et al. 2023a].

REFERENCES
Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic partial order

reduction. In POPL. ACM, 373–384. https://doi.org/10.1145/2535838.2535845
Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA.
Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. 1997. A Foundation for Actor Computation. J. Funct.

Program. 7, 1 (1997), 1–72. https://doi.org/10.1017/s095679689700261x
Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-driven compositional symbolic execution. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 367–381. https:
//doi.org/10.1007/978-3-540-78800-3_28

Tony Andrews, Shaz Qadeer, SriramK. Rajamani, Jakob Rehof, and Yichen Xie. 2004. Zing: A Model Checker for Concurrent
Software. In Proceedings of CAV. https://doi.org/10.1007/978-3-540-27813-9_42

Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. 2018. Optimal Dynamic Partial Order Reduction
with Observers. In TACAS (2) (Lecture Notes in Computer Science, Vol. 10806). Springer, 229–248. https://doi.org/10.1007/
978-3-319-89963-3_14

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2009. Satisfiability Modulo Theories. In Handbook

of Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press, 825–885.
Michael Ben-Or. 1983. Another Advantage of Free Choice (Extended Abstract): Completely Asynchronous Agreement

Protocols. In PODC. ACM, 27–30. https://doi.org/10.1145/800221.806707
Dirk Beyer, Karlheinz Friedberger, and Stephan Holzner. 2021. PJBDD: A BDD Library for Java and Multi-Threading. In

International Symposium on Automated Technology for Verification and Analysis. Springer, 144–149. https://doi.org/10.
1007/978-3-030-88885-5_10

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without BDDs. In
Tools and Algorithms for Construction and Analysis of Systems, Proceedings (Lecture Notes in Computer Science, Vol. 1579).
Springer, 193–207. https://doi.org/10.1007/3-540-49059-0_14

Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Computers 35, 8 (1986),
677–691. https://doi.org/10.1109/TC.1986.1676819

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang. 1992. Symbolic Model Checking:
10ˆ20 States and Beyond. Inf. Comput. 98, 2 (1992), 142–170.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs. In OSDI. USENIX Association, 209–224.

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1017/s095679689700261x
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-27813-9_42
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1109/TC.1986.1676819

Psym: Efficient Symbolic Exploration of Distributed Systems 29

Sagar Chaki and Arie Gurfinkel. 2018. BDD-Based Symbolic Model Checking. In Handbook of Model Checking. 219–245.
Benjamin Y. Chan and Elaine Shi. 2020. Streamlet: Textbook Streamlined Blockchains. In AFT. ACM, 1–11. https:

//doi.org/10.1145/3419614.3423256
Ernest J. H. Chang and Rosemary Roberts. 1979. An Improved Algorithm for Decentralized Extrema-Finding in Circular

Configurations of Processes. Commun. ACM 22, 5 (1979), 281–283. https://doi.org/10.1145/359104.359108
Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2001. Model checking. MIT Press.
Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In POPL. ACM, 238–252. https://doi.org/10.1145/512950.512973
Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013. Automatic Inference of Necessary

Preconditions. In VMCAI (Lecture Notes in Computer Science, Vol. 7737). Springer, 128–148. https://doi.org/10.1007/978-3-
642-35873-9_10

Pantazis Deligiannis, Alastair F Donaldson, Jeroen Ketema, Akash Lal, and Paul Thomson. 2015. Asynchronous programming,
analysis and testing with state machines. In ACM SIGPLAN Notices, Vol. 50. ACM, 154–164. https://doi.org/10.1145/
2737924.2737996

Murat Demirbas. 2017a. https://github.com/muratdem/HLC
Murat Demirbas. 2017b. https://github.com/muratdem/PlusCal-examples/blob/master/2PCTM/2PCwithBTM.tla
Murat Demirbas. 2017c. TLA+/Pluscal modeling of 2-phase commit transactions. http://muratbuffalo.blogspot.com/2017/

12/tlapluscal-modeling-of-2-phase-commit.html
Murat Demirbas. 2019. The Ben-Or decentralized consensus algorithm. https://muratbuffalo.blogspot.com/2019/12/the-

ben-or-decentralized-consensus.html
Ankush Desai. 2022. Formal Modeling and Analysis of Distributed Systems. https://www.youtube.com/watch?v=

5YjsSDDWFDY
Ankush Desai, Pranav Garg, and P. Madhusudan. 2014. Natural proofs for asynchronous programs using almost-synchronous

reductions. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages

& Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. 709–725. https://doi.org/10.
1145/2660193.2660211

Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien Zufferey. 2013a. P: safe asyn-
chronous event-driven programming. In ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 321–332. https://doi.org/10.1145/2491956.2462184
Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien Zufferey. 2013b. P: safe

asynchronous event-driven programming. In PLDI. ACM, 321–332. https://doi.org/10.1145/2491956.2462184
Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. 2018. Compositional programming and testing of

dynamic distributed systems. PACMPL 2, OOPSLA (2018), 159:1–159:30. https://doi.org/10.1145/3276529
Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. 2015. Systematic testing of asynchronous reactive systems. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September

4, 2015. 73–83. https://doi.org/10.1145/2786805.2786861
Ankush Desai, Serdar Tasiran, and Vishwas Narenda. 2021. Amazon S3 Strong Consistency. https://www.twitch.tv/videos/

962963706?t=0h15m15s. [Online; accessed 2022].
Manuel Fähndrich and Francesco Logozzo. 2010. Static Contract Checking with Abstract Interpretation. In FoVeOOS (Lecture

Notes in Computer Science, Vol. 6528). Springer, 10–30. https://doi.org/10.1007/978-3-642-18070-5_2
Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith. 2013. Con2colic testing. In Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering. 37–47. https://doi.org/10.1145/2491411.2491453
Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for model checking software. In POPL.

ACM, 110–121. https://doi.org/10.1145/1040305.1040315
Cormac Flanagan and Shaz Qadeer. 2002. Predicate abstraction for software verification. In POPL. ACM, 191–202. https:

//doi.org/10.1145/503272.503291
Andrew Gacek, John Backes, Mike Whalen, Lucas G. Wagner, and Elaheh Ghassabani. 2018. The JKind Model Checker. In

CAV (2) (Lecture Notes in Computer Science, Vol. 10982). Springer, 20–27. https://doi.org/10.1007/978-3-319-96142-2_3
P GitHub. 2021. P Case Studies. https://p-org.github.io/P/casestudies/. [Online; accessed 2021].
Patrice Godefroid. 1990. Using Partial Orders to Improve Automatic Verification Methods. In CAV (Lecture Notes in Computer

Science, Vol. 531). Springer, 176–185. https://doi.org/10.1007/BFb0023731
Patrice Godefroid. 1997. Model Checking for Programming Languages using Verisoft. In Proceedings of POPL. 174–186.

https://doi.org/10.1145/263699.263717
Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed automated random testing. In PLDI. ACM, 213–223.

https://doi.org/10.1145/1065010.1065036
Susanne Graf and Hassen Saïdi. 1997. Construction of Abstract State Graphs with PVS. In CAV (Lecture Notes in Computer

Science, Vol. 1254). Springer, 72–83. https://doi.org/10.1007/3-540-63166-6_10

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/3419614.3423256
https://doi.org/10.1145/3419614.3423256
https://doi.org/10.1145/359104.359108
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1145/2737924.2737996
https://doi.org/10.1145/2737924.2737996
https://github.com/muratdem/HLC
https://github.com/muratdem/PlusCal-examples/blob/master/2PCTM/2PCwithBTM.tla
http://muratbuffalo.blogspot.com/2017/12/tlapluscal-modeling-of-2-phase-commit.html
http://muratbuffalo.blogspot.com/2017/12/tlapluscal-modeling-of-2-phase-commit.html
https://muratbuffalo.blogspot.com/2019/12/the-ben-or-decentralized-consensus.html
https://muratbuffalo.blogspot.com/2019/12/the-ben-or-decentralized-consensus.html
https://www.youtube.com/watch?v=5YjsSDDWFDY
https://www.youtube.com/watch?v=5YjsSDDWFDY
https://doi.org/10.1145/2660193.2660211
https://doi.org/10.1145/2660193.2660211
https://doi.org/10.1145/2491956.2462184
https://doi.org/10.1145/2491956.2462184
https://doi.org/10.1145/3276529
https://doi.org/10.1145/2786805.2786861
https://www.twitch.tv/videos/962963706?t=0h15m15s
https://www.twitch.tv/videos/962963706?t=0h15m15s
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1145/2491411.2491453
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/503272.503291
https://doi.org/10.1145/503272.503291
https://doi.org/10.1007/978-3-319-96142-2_3
https://p-org.github.io/P/casestudies/
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/3-540-63166-6_10

30 Lauren Pick, Ankush Desai, and Aarti Gupta

Jim Gray and Leslie Lamport. 2006. Consensus on Transaction Commit. ACM Trans. Database Syst. 31, 1 (March 2006),
133–160. https://doi.org/10.1145/1132863.1132867

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian Zill.
2015. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th ACM Symposium on Operating

Systems Principles. https://doi.org/10.1145/2815400.2815428
Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. 2002. Lazy abstraction. In Proceedings of the 29th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 58–70. https://doi.org/10.1145/503272.503279
Gerard Holzmann. 1997. The Model Checker SPIN. IEEE Trans. on Software Engineering (1997). https://doi.org/10.1109/32.

588521
Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2016. Flexible Paxos: Quorum Intersection Revisited. In OPODIS

(LIPIcs, Vol. 70). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 25:1–25:14.
Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2022. TLA+ Specification of Flexible Paxos. https://github.com/

fpaxos/fpaxos-tlaplus
Radu Iosif. 2002. Symmetry Reduction Criteria for Software Model Checking. In SPIN (Lecture Notes in Computer Science,

Vol. 2318). Springer, 22–41. https://doi.org/10.1007/3-540-46017-9_5
Jepsen. 2021. Jepsen Tool. https://jepsen.io/.
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL. 637–650. https://doi.org/10.1145/2676726.2676980
Vineet Kahlon, Chao Wang, and Aarti Gupta. 2009. Monotonic Partial Order Reduction: An Optimal Symbolic Partial Order

Reduction Technique. In CAV (Lecture Notes in Computer Science, Vol. 5643). Springer, 398–413. https://doi.org/10.1007/978-
3-642-02658-4_31

Charles Edwin Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. 2007. Life, Death, and the Critical Transition:
Finding Liveness Bugs in Systems Code. In Symposium on Networked Systems Design and Implementation.

Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. 2019. TLA+ model checking made symbolic. Proc. ACM Program. Lang. 3,
OOPSLA (2019), 123:1–123:30. https://doi.org/10.1145/3360549

Sandeep S Kulkarni, Murat Demirbas, DeepakMadappa, Bharadwaj Avva, andMarcelo Leone. 2014. Logical physical clocks. In
International Conference on Principles of Distributed Systems. Springer, 17–32. https://doi.org/10.1007/978-3-319-14472-6_2

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012. Efficient State Merging in Symbolic
Execution (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 193–204. https://doi.org/10.1145/
2254064.2254088

Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. 2009. Reducing context-bounded concurrent
reachability to sequential reachability. In International Conference on Computer Aided Verification. Springer, 477–492.
https://doi.org/10.1007/978-3-642-02658-4_36

Akash Lal and Thomas Reps. 2008. Reducing concurrent analysis under a context bound to sequential analysis. In International
Conference on Computer Aided Verification. Springer, 37–51. https://doi.org/10.1007/978-3-540-70545-1_7

Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4 (Dec. 2001).
Leslie Lamport. 2002. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley.
Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi. 2014. SAMC:

Semantic-aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation (OSDI).
Richard J Lipton. 1975. Reduction: A method of proving properties of parallel programs. Commun. ACM 18, 12 (1975),

717–721. https://doi.org/10.1145/361227.361234
Peizun Liu, Thomas Wahl, and Akash Lal. 2019. Verifying asynchronous event-driven programs using partial abstract

transformers. In International Conference on Computer Aided Verification. Springer, 386–404. https://doi.org/10.1007/978-
3-030-25543-5_22

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers Inc.
Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem A. Sakallah. 2019. I4: incremental

inference of inductive invariants for verification of distributed protocols. In SOSP. ACM, 370–384. https://doi.org/10.
1145/3341301.3359651

Rupak Majumdar and Filip Niksic. 2017. Why is random testing effective for partition tolerance bugs? Proceedings of the

ACM on Programming Languages 2, POPL (2017), 1–24. https://doi.org/10.1145/3158134
Antoni W. Mazurkiewicz. 1986. Trace Theory. In Advances in Petri Nets (Lecture Notes in Computer Science, Vol. 255). Springer,

279–324. https://doi.org/10.1007/3-540-17906-2_30
Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In CAV (Lecture Notes in Computer Science, Vol. 4144).

Springer, 123–136. https://doi.org/10.1007/11817963_14
Microsoft Coyote. 2022. Fearless coding for reliable asynchronous software. https://github.com/microsoft/coyote

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/1132863.1132867
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/503272.503279
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://github.com/fpaxos/fpaxos-tlaplus
https://github.com/fpaxos/fpaxos-tlaplus
https://doi.org/10.1007/3-540-46017-9_5
https://jepsen.io/
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1145/3360549
https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-540-70545-1_7
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-030-25543-5_22
https://doi.org/10.1007/978-3-030-25543-5_22
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3158134
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/11817963_14
https://github.com/microsoft/coyote

Psym: Efficient Symbolic Exploration of Distributed Systems 31

Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K Brayton. 2005. FRAIGs: A unifying representation for logic

synthesis and verification. Technical Report. ERL Technical Report.
Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash Lal. 2020. Learning-based controlled concurrency testing.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–31. https://doi.org/10.1145/3428298
Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for systematic testing of multithreaded programs.

In PLDI. ACM, 446–455. https://doi.org/10.1145/1250734.1250785
Chris Newcombe. 2014. Why amazon chose TLA+. In International Conference on Abstract State Machines, Alloy, B, TLA,

VDM, and Z. Springer, 25–39. https://doi.org/10.1007/978-3-662-43652-3_3
Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and Laure Petrucci. 2018. Quasi-Optimal Partial Order

Reduction. In CAV (2) (Lecture Notes in Computer Science, Vol. 10982). Springer, 354–371. https://doi.org/10.1007/978-3-
319-96142-2_22

Burcu Kulahcioglu Ozkan, RupakMajumdar, Filip Niksic, Mitra Tabaei Befrouei, and GeorgWeissenbacher. 2018. Randomized
testing of distributed systems with probabilistic guarantees. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–28. https://doi.org/10.1145/3276530

P-GitHub. 2023. The P Programming Langugage. https://github.com/p-org/P.
Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: Safety Verification by

Interactive Generalization. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’16). https://doi.org/10.1145/2908080.2908118
Doron Peled. 2018. Partial-Order Reduction. In Handbook of Model Checking. Springer, 173–190. https://doi.org/10.1007/978-

3-319-10575-8_6
Lauren Pick, Ankush Desai, and Aarti Gupta. 2023a. Psym: Efficient Symbolic Exploration of Distributed Systems. (Mar

2023). https://doi.org/10.5281/zenodo.7814715
Lauren Pick, Ankush Desai, and Aarti Gupta. 2023b. Psym: Efficient Symbolic Exploration of Distributed Systems (Extended

Version). https://lmpick.github.io/psym-extended.pdf.
Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. 2001. Automatic Deductive Verification with Invisible Invariants. In TACAS

(Lecture Notes in Computer Science, Vol. 2031). Springer, 82–97. https://doi.org/10.1007/3-540-45319-9_7
Daniel Schemmel, Julian Büning, César Rodríguez, David Laprell, and Klaus Wehrle. 2020. Symbolic Partial-Order Execution

for Testing Multi-Threaded Programs. In CAV (1) (Lecture Notes in Computer Science, Vol. 12224). Springer, 376–400.
https://doi.org/10.1007/978-3-030-53288-8_18

Koushik Sen and Gul Agha. 2006a. Automated Systematic Testing of Open Distributed Programs. In FASE (Lecture Notes in

Computer Science, Vol. 3922). Springer, 339–356. https://doi.org/10.1007/11693017_25
Koushik Sen and Gul Agha. 2006b. CUTE and jCUTE: Concolic Unit Testing and Explicit Path Model-Checking Tools. In

CAV (Lecture Notes in Computer Science, Vol. 4144). Springer, 419–423. https://doi.org/10.1007/11817963_38
Koushik Sen, George C. Necula, Liang Gong, and Wontae Choi. 2015. MultiSE: multi-path symbolic execution using value

summaries. In ESEC/SIGSOFT FSE. ACM, 842–853. https://doi.org/10.1145/2786805.2786830
Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and proving with distributed protocols. Proceedings

of ACM Programming Languages 2, POPL (2018), 28:1–28:30. https://doi.org/10.1145/3158116
Sanjit A. Seshia and Pramod Subramanyan. 2018. UCLID5: Integrating Modeling, Verification, Synthesis and Learning. In

MEMOCODE. IEEE, 1–10. https://doi.org/10.1109/MEMCOD.2018.8556946
Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and Gul Agha. 2012. TransDPOR: A

Novel Dynamic Partial-Order Reduction Technique for Testing Actor Programs. In FMOODS/FORTE (Lecture Notes in

Computer Science, Vol. 7273). Springer, 219–234. https://doi.org/10.1007/978-3-642-30793-5_14
TLA+. 2021. Chang-Roberts algorithm for leader election in a ring. https://github.com/tlaplus/Examples/tree/

616c4c2e00dd7084c623d1dcc83b140279652fb4/specifications/chang_roberts
TLA+. 2023. TLA+ Examples. https://github.com/tlaplus/Examples
Emina Torlak and Rastislav Bodík. 2014. A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA, 530–541. https://doi.org/10.
1145/2594291.2594340

Willem Visser and Peter C. Mehlitz. 2005. Model Checking Programs with Java PathFinder. In Proceedings of SPIN.
https://doi.org/10.1007/s100090050043

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Tom Anderson. 2015.
Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. In 2015 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/2737924.2737958
Pierre Wolper and Patrice Godefroid. 1993. Partial-Order Methods for Temporal Verification. In CONCUR (Lecture Notes in

Computer Science, Vol. 715). Springer, 233–246.

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/3428298
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1145/3276530
https://github.com/p-org/P
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.5281/zenodo.7814715
https://lmpick.github.io/psym-extended.pdf
https://doi.org/10.1007/3-540-45319-9_7
https://doi.org/10.1007/978-3-030-53288-8_18
https://doi.org/10.1007/11693017_25
https://doi.org/10.1007/11817963_38
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/3158116
https://doi.org/10.1109/MEMCOD.2018.8556946
https://doi.org/10.1007/978-3-642-30793-5_14
https://github.com/tlaplus/Examples/tree/616c4c2e00dd7084c623d1dcc83b140279652fb4/specifications/chang_roberts
https://github.com/tlaplus/Examples/tree/616c4c2e00dd7084c623d1dcc83b140279652fb4/specifications/chang_roberts
https://github.com/tlaplus/Examples
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1007/s100090050043
https://doi.org/10.1145/2737924.2737958

32 Lauren Pick, Ankush Desai, and Aarti Gupta

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. 2021. DistAI: Data-Driven Automated
Invariant Learning for Distributed Protocols. In OSDI. USENIX Association, 405–421.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+ specifications. In Advanced Research Working

Conference on Correct Hardware Design and Verification Methods. Springer, 54–66. https://doi.org/10.1007/3-540-48153-2_6

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1007/3-540-48153-2_6

Psym: Efficient Symbolic Exploration of Distributed Systems 33

A PROOF OF CANONICITY FOR VALUE SUMMARIES
Theorem A.1 (Canonicity of Primitive Value Summaries). If a canonical representation is

used for propositional formulas and for value components of guarded values, then for any two primitive

value summaries pvs0 and pvs1, pvs0 ≡ pvs1 iff pvs0 = pvs1.

Proof. That equivalence implies equality follows from the unique value and non-vacuous
properties. The intuition is that, for each (𝑔, 𝑣) ∈ pvs0, because of the non-vacuous property and
pvs0 ≡ pvs1, there must be (𝑔1, 𝑣) ∈ pvs1. We know from the unique value property that this is the
only guarded value in pvs1 with value 𝑣 . It follows that 𝑔 ⇔ 𝑔1. Because we assume a canonical
representation for propositional formulas, we know that 𝑔 = 𝑔1. Thus, for each (𝑔, 𝑣) ∈ pvs0,
(𝑔, 𝑣) ∈ pvs1, and, by symmetry, for each (𝑔, 𝑣) ∈ pvs1, (𝑔, 𝑣) ∈ pvs0. We conclude that the sets pvs0
and pvs1 contain the same elements and thus are equal. That equality implies equivalence follows
from the definition of equivalence. □

Theorem A.2 (Canonicity of Value Summaries). If a canonical representation is used for

propositional formulas and for value components of guarded values, then all value summaries are such

that, for any two value summaries vs0, vs1, vs0 ≡ vs1 iff vs0 = vs1.

Proof. That equality implies equivalence follows from the definition of equivalence. We proceed
by structural induction to show that equivalence implies equality. Note that from the definition of
equivalence, we have that the equivalence of composite value summaries implies equivalence of
their components.
Primitive Value Summaries. Handled above.
Tuples. Assume that we have two equivalent tuple value summaries (vs0, . . . , vs𝑛) and
(ws0, . . . ,ws𝑘). Our induction hypothesis as equivalence between any two nested value summaries
vs𝑖 and ws 𝑗 (𝑖 ∈ {0, . . . , 𝑛}, 𝑗 ∈ {0, . . . 𝑘}) implies their equality. For these to represent the same sets
of concrete tuples under the same guards, we must have that:
- 𝑛 = 𝑘

- For each 𝑖 ∈ {0, . . . 𝑛}, we must have that vs𝑖 ≡ ws𝑖 . From induction hypothesis, it follows that
vs𝑖 = ws𝑖 .

Since (vs0, . . . , vs𝑛) and (ws0, . . . ,ws𝑘) have the same number of components and are component-
wise equal, they are equal.
Lists. Assume that we have two equivalent list value summaries ls0 and ls1. Either they are
both ({(𝑔, 0)}, []), in which case they are trivially equal, or they are of the form (𝑠𝑥 , 0 :: xs) and
(𝑠𝑦, 𝑦 :: ys), respectively. Our induction hypothesis is that if 𝑠𝑥 and 𝑠𝑦 are equivalent, then they are
equal and that for any 𝑥 ∈ xs and any 𝑦 ∈ ys, if 𝑥 an 𝑦 are equivalent, then they are equal. We now
need to show that ls0 and ls1 are equal. We have that 𝑠𝑥 and 𝑠𝑦 are equivalent, and that the lists xs
and ys are element-wise equivalent. From the induction hypothesis, 𝑠𝑥 and 𝑠𝑦 are equal and that
the lists are are element-wise equal as well.
Maps. Assume that we have two equivalent map value summaries mp0 and mp1. Our induction
hypothesis is that the value summaries in the range of𝑚 are such that equivalence of any two of
them implies equality. From the equivalence of𝑚0 and𝑚1, we know that𝑚0 and𝑚1 are such that
𝑡 ↦→ vs0 ∈ 𝑚0 iff 𝑡 ↦→ vs1 ∈ 𝑚1 for some semantically equal vs0, vs1. We know from the induction
hypothesis that all such vs0, vs1 are syntactically equal. It follows that the maps mp0 and mp1 are
also syntactically equal. □

, Vol. 1, No. 1, Article . Publication date: June 2023.

34 Lauren Pick, Ankush Desai, and Aarti Gupta

B LIFTING OF COMMON COMPOSITE DATA STRUCTURES AND OPERATIONS
The P language contains several types that may be used in handlers: primitive types, tuples, lists,
sets, and maps. We will outline how we choose to represent these here, and give some liftings of
common operations over them as operational semantics for P expressions, and, where relevant (i.e.,
for assignments), P statements. The P semantics also refers to configurations and messages, which
can both be represented using these types.

B.1 Primitives
The P primitives include numerical values, Boolean values, and enums, all of which we model with
primitive value summaries. Events E and machine identifiers I are also lifted to primitive value
summaries. Formally, we have that ℓ (𝑝) = {(⊤, 𝑝)} and Vals(pvs) = {𝑣 | ∃𝑔.(𝑔, 𝑣) ∈ pvs}. Updates
are performed using the updateUnderG operation defined previously.

Unary operations. The following rule shows the lifted semantics for a unary operation op that
can be applied directly on concrete values op(𝑣):

Unary
Int = {(𝑔′, op(𝑣)) | (𝑔′, 𝑣) ∈ pvs}

𝑔, loc𝑐 [id] ⊢ op(pvs) ↓ {(𝑔′′, 𝑣) | ∀(𝑔′, 𝑣 ′) ∈ Int .𝑣 ′ = 𝑣 ⇒ (𝑔′′ ⇒ 𝑔′)}

Binary operations. The following rule shows the lifted semantics for a binary operation binop

that can be applied directly on concrete values binop(𝑣0, 𝑣1) (note that this includes the semantics
for checking equality of two primitive value summaries):

Binary-Empty
𝑔, 𝐿𝑐 [id] ⊢ binop({}, pvs1) ↓ {}

Binary-via-Unary
𝑔, 𝐿𝑐 [id] ⊢ (𝜆𝑣1.binop(𝑣0, 𝑣1) (pvs1) ↓ res
𝑔, 𝐿𝑐 [id] ⊢ binop({(𝑔0, 𝑣0)}, pvs1) ↓ res

Binary
𝑔, 𝐿𝑐 [id] ⊢ binop({(𝑔0, 𝑣0)}, pvs1) ↓ (𝑔′0, 𝑣 ′0) . . . 𝑔, 𝐿𝑐 [id] ⊢ binop({(𝑔𝑛, 𝑣𝑛)}, pvs1) ↓ (𝑔′𝑛, 𝑣 ′𝑛)

Int = {(𝑔′0, 𝑣 ′0), . . . , (𝑔′𝑛, 𝑣 ′𝑛)}
𝑔, 𝐿𝑐 [id] ⊢ binop({(𝑔0, 𝑣0), . . . , (𝑔𝑛, 𝑣𝑛)}, pvs1) ↓ {(𝑔′′, 𝑣) | ∀(𝑔′, 𝑣 ′) ∈ Int .𝑣 ′ = 𝑣 ⇒ (𝑔′′ ⇒ 𝑔′)}

B.2 Tuples
Tuples are encoded as tuples of value summaries. A tuple (𝑣0, . . . , 𝑣𝑛) can be lifted to a tuple
(vs0, . . . , vs𝑛), where each vs𝑖 = ℓ (𝑣𝑖). The Vals function is then given by the following:

Vals(𝑣𝑠) = {(𝑣0, . . . , 𝑣𝑛) | ∃𝑔.∀𝑖 ∈ {0, . . . , 𝑛}.{𝑣𝑖 } = Values((vs𝑖 |𝑔))}

An invariant for the tuple representation (vs0, . . . , vs𝑛) is that for all 𝑖, 𝑗 ∈ {0, . . . , 𝑛}, 𝐷 (vs𝑖) =
𝐷 (vs 𝑗), i.e., all entries of the tuple must be defined for the same guards.

Indexing. Getting the 𝑖th element of a tuple for a concrete 𝑖 can be implemented by getting the
𝑖th element of its value summary. Note that if we used a primitive value summary representation,
we would need to extract the 𝑖th element of each tuple represented by the value summary, then
merge the results.

Tuple-Index
0 ≤ 𝑖 ≤ 𝑛

𝑔, 𝐿𝑐 [id] ⊢ (vs0, . . . , vs𝑛).𝑖 ↓ vs𝑖

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 35

Updating. Setting the value of an element of a tuple to a new value vsnew can similarly be
performed by setting the 𝑖th element of the tuple value summary 𝑡 to updateUnderG(𝑡 .𝑖, vsnew, 𝑔 ∧
𝐷 (vsnew)), where 𝑔 is the guard under which the update is performed.

Tuple-Update
0 ≤ 𝑖 ≤ 𝑛 𝐿𝑐 [𝑖𝑑] [𝑡] = (vs0, . . . , vs𝑛) vs

′
𝑖 = updateUnderG(vs.𝑖, vsnew, 𝑔 ∧ 𝐷 (vsnew))

𝑐′ = (𝐿𝑐 [𝑖𝑑] [𝑡 ↦→ (vs0, . . . , vs𝑖−1, vs′𝑖 , vs𝑖+1, . . . , vs𝑛)], 𝐵𝑐 , 𝑆𝑂𝑐)
𝑔, id ⊢ (𝑡 .𝑖 = vsnew, 𝑐) → (skip, 𝑐′)

Pairwise. Pairwise applications of binary operations binop (including equality) to tuples have the
following semantics:

Pairwise-Tuple
𝑔, 𝐿𝑐 [id] ⊢ binop(vs0, vs′0) ↓ vs′′0 . . . 𝑔, 𝐿𝑐 [id] ⊢ binop(vs𝑛, vs′𝑛) ↓ vs′′𝑛

𝑔, 𝐿𝑐 [id] ⊢ binop((vs0, . . . , vs𝑛), (vs′0, . . . , vs′𝑛)) ↓ (vs′′0 , . . . , vs′′𝑛)

B.3 Lists
We encode a list xs as a pair (𝑠, xs) of an integer value summary 𝑠 = ℓ (size(𝑥𝑠)) representing the
size of the list and a list ls (ls[𝑖] = ℓ (xs[𝑖])) of value summaries representing the list element values.
The Vals function is then given by the following:

Vals((𝑠, xs)) = {{𝑥0, . . . , 𝑥𝑛} | ∃𝑔, 𝑛.∀𝑖 ∈ {0, . . . , 𝑛}.{𝑥𝑖 } = Vals((xs[𝑖] |𝑔))}

An invariant for the list representation (𝑠, ls) is that there is an element ls[𝑖] iff there is a (𝑔, 𝑘) ∈ 𝑠
with 𝑘 > 𝑖 and 𝐷 (ls[𝑖]) ⇔ ∨{𝑔 | (𝑔, 𝑘) ∈ 𝑠, 𝑘 > 𝑖}. Maintaining the size of the list separately allows
the domain for the the size value summary to determine the domain for the list. It additionally
allows for efficient list size queries.

Size. Since we store the current size of the list in the representation, the size function that returns
the value of the list can be implemented by just returning the first element of the pair.

List-Size
𝑔, loc𝑐 [id] ⊢ size(𝑝, ls) ↓ 𝑝

Cons. Cons (::) can be lifted to value summaries as follows:

List-Cons-Empty
𝑔, 𝐿𝑐 [id] ⊢ 𝑝 + ℓ (1) ↓ 𝑝new 𝑝′ = updateUnderG(𝑝, 𝑝new, 𝑔 ∧ 𝐷 (vs))

𝑔, 𝐿𝑐 [id] ⊢ vs ::ℓ (𝑝, []) ↓ (𝑝′, [(vs |𝑔)])

List-Cons-Nonempty
𝑔, 𝐿𝑐 [id] ⊢ 𝑝 + ℓ (1) ↓ 𝑝new 𝑝′ = updateUnderG(𝑝, 𝑝new, 𝑔 ∧ 𝐷 (vs))

𝑥 ′ = updateUnderG(𝑥, vs, 𝑔 ∧ 𝐷 (vs)) xs
′ = 𝑀 ((𝑥 :: xs |𝑔 ∧ 𝐷 (vs)), (xs |¬𝑔 ∨ ¬𝐷 (vs)))

𝑔, 𝐿𝑐 [id] ⊢ vs ::ℓ (𝑝, 𝑥 :: xs) ↓ (𝑝′, 𝑥 ′ :: xs′)

Indexing. Getting the 𝑖th element from a list value summary (𝑝, ls) for a concrete 𝑖 can be
implemented by getting the 𝑖th element of ls. If the index to get is in the form of an integer value
summary vs𝑖 , then for each (𝑔, 𝑖), ls[𝑖] should be gotten, restricted with guard 𝑔, and added to a set.
The merge of all the value summaries in the resulting set gives the result of the get operation:

, Vol. 1, No. 1, Article . Publication date: June 2023.

36 Lauren Pick, Ankush Desai, and Aarti Gupta

Get-Helper-Concrete-Singleton
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 :: xs[0] ↓ 𝑥

Get-Helper-Concrete
𝑖 > 0 𝑔, 𝐿𝑐 [id] ⊢ xs[𝑖 − 1] ↓ res

𝑔, 𝐿𝑐 [id] ⊢ 𝑥 :: xs[𝑖] ↓ res

Get-Helper-Base
getGuard = 𝑔 ∧ getGuardFor (𝑖, 0) 𝑔′ = 𝑔 ∧ ¬getGuard 𝑔′ ⇒⊥

𝑔, 𝐿𝑐 [id] ⊢ 𝑥 :: xs[vs𝑖] ↓ (𝑥 |getGuard)

Get-Helper
getGuard = 𝑔 ∧ getGuardFor (𝑖, 0)

𝑔′ = 𝑔 ∧ ¬getGuard 𝑔′ ⇏⊥ 𝑔′, 𝐿𝑐 [id] ⊢ vs𝑖 − 1 ↓ 𝑖′ 𝑔′, 𝐿𝑐 [id] ⊢ xs[𝑖′] ↓ res
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 :: xs[vs𝑖] ↓ 𝑀 ((𝑥 |getGuard), (res |𝑔′))

Get
𝑔, 𝐿𝑐 [id] ⊢ xs[vs𝑖] ↓ res

𝑔, 𝐿𝑐 [id] ⊢ (𝑝, xs) [vs𝑖] ↓ res

Update. Setting an element of a list to a value summary value works similarly as for tuples. Here
we introduce a list setting expression shown in rules Set-Base and Set, that is used to handle the
assignment to a particular index in List-Update.

Set-Helper-Base
getGuard = 𝑔 ∧ getGuardFor (0, vs)

𝑔′ = 𝑔 ∧ ¬getGuard 𝑔′ ⇒⊥ 𝑥 ′ = updateUnderG(𝑥, vs, getGuard)
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 :: 𝑥𝑠 [vs𝑖 ← vs] ↓ 𝑥 ′ :: xs

Set-Helper
getGuard = 𝑔 ∧ getGuardFor (0, 𝑣𝑠) 𝑔′ = 𝑔 ∧ ¬getGuard 𝑔′ ⇏⊥

𝑥 ′ = updateUnderG(𝑥, vs, getGuard) 𝑔′, 𝐿𝑐 [id] ⊢ vs𝑖 − 1 ↓ vs′𝑖 𝑔′, id ⊢ 𝑥𝑠 [vs′𝑖] = vs ↓ xs′

𝑔, 𝐿𝑐 [id] ⊢ 𝑥 :: 𝑥𝑠 [vs𝑖 ← vs] ↓ 𝑥 ′ :: xs′

Set
𝑔, 𝐿𝑐 [id] ⊢ 𝑥𝑠 [vs𝑖 ← vs] ↓ xs′

𝑔, 𝐿𝑐 [id] ⊢ (𝑝, 𝑥𝑠) [vs𝑖 ← vs] ↓ (𝑝, xs′)

List-Update
𝑔, 𝐿𝑐 [id] ⊢ 𝐿𝑐 [id] [ls] [vs𝑖 ← vs] ↓ res 𝑐′ = (𝐿𝑐 [id] [ls ↦→ res], 𝐵𝑐 , 𝑆𝑂𝑐)

𝑔, [𝑖𝑑] ⊢ (ls[vs𝑖] = vs, 𝑐) → (skip, 𝑐′))

Equality. Equality of lists is checked as follows:

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 37

Eqality-List-Empty
𝑔, 𝐿𝑐 [id] ⊢ 𝑝𝑥 = 𝑝𝑦 ↓ equalSize

𝑔, 𝐿𝑐 [id] ⊢ ((𝑝𝑥 , []) = (𝑝𝑦, [])) ↓ equalSize

Eqality-List-Helper-Empty
𝑔, 𝐿𝑐 [id] ⊢ [] = [] ↓ {(𝑔,⊤)}

Eqality-List-Helper-Empty-1
ys ≠ []

𝑔, 𝐿𝑐 [id] ⊢ [] = ys ↓ {(𝑔,⊥)}

Eqality-List-Helper-Empty-2
xs ≠ []

𝑔, 𝐿𝑐 [id] ⊢ xs = [] ↓ {(𝑔,⊥)}

Eqality-List-Helper
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 = 𝑦 ↓ equalElt

𝑔, 𝐿𝑐 [id] ⊢ xs = ys ↓ equalElts 𝑔, 𝐿𝑐 [id] ⊢ equalElt ∧ equalElts ↓ res
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 :: xs = 𝑦 :: ys ↓ res

Eqality-List
𝑔, 𝐿𝑐 [id] ⊢ 𝑝𝑥 = 𝑝𝑦 ↓ equalSize

𝑔, 𝐿𝑐 [id] ⊢ xs = ys ↓ equalElts 𝑔, 𝐿𝑐 [id] ⊢ equalSize ∧ equalElts ↓ res
𝑔, 𝐿𝑐 [id] ⊢ (𝑝𝑥 , 𝑥 :: xs) = (𝑝𝑦, 𝑦 :: ys) ↓ res

GetIndex and Containment. Getting the index of an element can be done by iterating over the
indices of the list. The element at each index is checked for equality to the desired value, and if it is
equal, that index is the solution. The current index idx is maintained during iterations. Under the
conditions (i.e., guard) that the index has not been found, the process continues:

Get-Idx-Helper-Empty
𝑔, 𝐿𝑐 [id] ⊢ getIdxHelper ([], vs, idx) ↓ {(𝑔,⊥)}

Get-Idx-Helper-Base
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 = vs ↓ res 𝑔′ = 𝑔 ∧ getGuardFor (res,⊥) 𝑔′ ⇒⊥

𝑔, 𝐿𝑐 [id] ⊢ getIdxHelper (𝑥 :: xs, vs, idx) ↓ (idx |𝑔 ∧ getGuardFor (res,⊤))

Get-Idx-Helper
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 = vs ↓ contained

𝑔′ = 𝑔 ∧ getGuardFor (contained,⊥) 𝑔′ ⇏⊥ 𝑔′, 𝐿𝑐 [id] ⊢ idx + 1 ↓ idx′
𝑔′, 𝐿𝑐 [id] ⊢ getIdxHelper (xs, vs, idx′) ↓ intRes res = 𝑀 (intRes, (idx |𝑔 ∧ getGuardFor (res,⊤)))

𝑔, 𝐿𝑐 [id] ⊢ getIdxHelper (𝑥 :: xs, vs, idx) ↓ res

Get-Idx
𝑔, 𝐿𝑐 [id] ⊢ getIdxHelper (xs, vs, {(𝑔, 0)}) ↓ res

𝑔, 𝐿𝑐 [id] ⊢ getIdx ((𝑝, xs), vs) ↓ res

, Vol. 1, No. 1, Article . Publication date: June 2023.

38 Lauren Pick, Ankush Desai, and Aarti Gupta

Getting whether or not a list contains an element is performed similarly, but no extra idx value
needs to be mtaintained:

Contains-Helper-Empty
𝑔, 𝐿𝑐 [id] ⊢ contains([], vs) ↓ {(𝑔,⊥)}

Contains-Helper-Base
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 = vs ↓ res 𝑔′ = 𝑔 ∧ getGuardFor (contained,⊥) 𝑔′ ⇒⊥

𝑔, 𝐿𝑐 [id] ⊢ contains(𝑥 :: xs, vs) ↓ res

Contains-Helper
𝑔, 𝐿𝑐 [id] ⊢ 𝑥 = vs ↓ contained 𝑔′ = 𝑔 ∧ getGuardFor (contained,⊥)

𝑔′ ⇏⊥ 𝑔′, 𝐿𝑐 [id] ⊢ contains(xs, vs) ↓ contained′ 𝑔, 𝐿𝑐 [id] ⊢ contained ∨ contained′ ↓ res
𝑔, 𝐿𝑐 [id] ⊢ contains(𝑥 :: xs, vs) ↓ res

Contains
𝑔, 𝐿𝑐 [id] ⊢ contains(xs, vs) ↓ res

𝑔, 𝐿𝑐 [id] ⊢ contains((𝑝, xs), vs) ↓ res

The containment check can be performed by first getting index of an element, and then returning
the following Boolean value summary, where res is the result of getting the index of the element:

{(𝐷 (res),⊤), (¬𝐷,⊥)}

B.4 Sets
Set value summaries can implemented using the same representation as list value summaries
(e.g., containment), but additional invariants must be maintained for the representation (𝑠, ls) to
guarantee that the representation is canonical.

Canonicity can be maintained by making sure that (1) every addition of an element to the set is
done only under guards for which the underlying set does not already contain the element, and (2)
elements are added so that the list is sorted according to some total order on its elements. This
corresponds to a standard implementation of sets on top of lists, but instead using lifted lists and
lifted list operations.

B.5 Maps
We can encode a map mp : 𝜏0 → 𝜏1 as a map mp

vs
from 𝜏0 to VS(𝜏1) as is mentioned in the paper.

However, in practice we choose to encode map mp : 𝜏0 → 𝜏1 as a pair (ℓ (keys(𝑚)),mp
vs
), where

mp
vs
is a map from 𝜏0 to VS(𝜏1). The first element of the pair gives key set under different guards,

and the map mp
vs
maps concrete values within the key set to their corresponding value summary

values. Each key is stored as a primitive value summary. Because of this, if keys are composite data
structures, there may be some resulting redundancy that we cannot recognize, but in practice, keys
tend to be primitive data structures that are naturally represented using primitive value summaries.
An invariant for the map representation (ks,mp

vs
) is that if contains(ks, 𝑘) contains the value

true under guard 𝑔, then 𝑔 = {𝐷 (mp
vs
[key]) | key ∈ Values(𝑘)}.

Get. Getting an element from a map involves getting all the value summaries for the all possible
key values in the provided key value summaries (recall that keys are primitive value summaries, so
no additional computation is needed for this) and merging them under the appropriate guards:

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 39

Map-Get
{(𝑔0, 𝑘0), . . . , (𝑔𝑛, 𝑘𝑛)} res = 𝑀 ((mp[𝑘0] |𝑔0), . . . , (mp[𝑘𝑛] |𝑔𝑛))

𝑔, 𝐿𝑐 [id] ⊢ (keys,mp) [vs𝑘] ↓ res
where𝑀 (𝑥0, . . . , 𝑥𝑛) = 𝑀 (𝑥0, 𝑀 (𝑥1, 𝑀 (𝑥2, . . . , 𝑥𝑛) · · ·).

Update. The lifted update of a map map[vs𝑘] ← vs𝑣 can be performed by making the following
assignment for each (𝑔, 𝑘) ∈ vs𝑘 :

mp𝑣 [𝑘] ← updateUnderG(mp𝑣 [𝑘], vs𝑣, 𝑔 ∧ 𝐷 (vs𝑣))
where mp𝑣 is the second component of the value of map[vs𝑘] in the current configuration:

Map-Update
(oldKs, oldMap) = 𝐿𝑐 [map]

newKs = {𝑘 | (𝑔, 𝑘) ∈ vs𝑘 } ∀𝑘 ∈ oldKs \ newKs.𝐿′𝑐 [map] .2[𝑘] = oldMap[𝑘]
∀𝑘 ∈ newKs.𝐿′𝑐 [map] .2[𝑘] = updateUnderG(oldMap[𝑘], vs𝑣, 𝑔 ∧ 𝐷 (vs𝑣))

𝑔, 𝐿𝑐 [id] ⊢ oldKs ∪ vs𝑘 ↓ 𝐿𝑐 [map] .1
𝑔, id ⊢ (map[vs𝑘] ← vs𝑣, 𝑐) → (skip, (𝐿′𝑐 , 𝐵𝑐 , 𝑆𝑂𝑐))

Equality. Equality of maps can be checked by making sure the domains are the same (using the
set equality check) and then making sure that keys map to the same values (using the equality
check for those value summaries):

Map-Eqality
𝑔, 𝐿[id] ⊢ keys = keys

′ ↓ domEq {𝑘0, . . . , 𝑘𝑛} = Domain(mp) ∩ Domain(mp
′)

𝑔, 𝐿[id] ⊢ (mp[𝑘0], . . . ,mp[𝑘𝑛]) = (mp
′ [𝑘0], . . . ,mp

′ [𝑘𝑛]) ↓ valEq
𝑔, 𝐿[id] ⊢ domEq ∧ valEq ↓ res

𝑔, 𝐿[id] ⊢ (keys,mp) = (keys′,mp
′) ↓ res

C LIFTED SEMANTICS FOR P
Fig. 8 gives the remaining rules for the lifted semantics for P, including rules for the top-level
schedule step, statements, and the choose expression. Expressions inside event handlers, which may
contain data-structure-specific operations, as well as assignments for composite data structures,
have lifted semantics as described above.

, Vol. 1, No. 1, Article . Publication date: June 2023.

40 Lauren Pick, Ankush Desai, and Aarti Gupta

Schedule Step
choices = ℓ (𝜆𝑥.{𝑦 | enabled(𝑦, 𝑥)})(𝑐) 𝑔 = 𝜙 ∧

∨
{𝐷 (choice) | choice ∈ choices}

𝑔, {} ⊢choose choices ↓𝑚 𝑐′′ = (𝐿𝑐 , 𝐵𝑐 − {𝑚}, 𝑆𝑂𝑐)
{𝑔0, . . . , 𝑔𝑛} = {𝜙 | ∃𝑡, ev.𝜙 = getGuardFor (𝑚.𝑡𝑔𝑡, 𝑡) ∧ getGuardFor (𝑚.ev, ev)}

∀0 ≤ 𝑖 ≤ 𝑛.𝑚𝑖 = (𝑚 |𝑔𝑖) ∧ 𝐻 [𝐿𝑐 [𝑚.𝑡𝑔𝑡𝑖],𝑚𝑖 .ev] = ℎ𝑖
𝑔0,𝑚0 .𝑡𝑔𝑡 ⊢ (ℎ0 (𝑚0), 𝑐′′) →∗ (skip, 𝑐′0) . . . 𝑔𝑛,𝑚𝑛 .𝑡𝑔𝑡 ⊢ (ℎ𝑛 (𝑚𝑛), 𝑐′𝑛−1) →∗ (skip, 𝑐′𝑛)

𝑐′ = (𝑐′𝑛 |𝐷 (𝑚))

𝐻,𝜙 ⊢ 𝑐 𝑚
==⇒ 𝑐′

Seqence
𝑔, 𝑖𝑑 ⊢ (𝑆0, 𝑐) →∗ (skip, 𝑐′) 𝑔, 𝑖𝑑 ⊢ (𝑆1, 𝑐′) →∗ (skip, 𝑐′′)

𝑔, 𝑖𝑑 ⊢ (𝑆0; 𝑆1, 𝑐) → (skip, 𝑐′′)

Assign-Var
𝐿𝑐 [𝑖𝑑] ⊢ 𝑒 ↓ 𝑣

𝑐′ = (𝐿𝑐 [𝑖𝑑] [𝑥 ↦→ updateUnderG(𝑥, 𝑣, 𝑔)], 𝐵𝑐 , 𝑆𝑂𝑐)
𝑔, 𝑖𝑑 ⊢ (𝑥 := 𝑒, 𝑐) → (skip, 𝑐′)

Send
𝑚 = ((𝑖𝑑, 𝑒𝑣, 𝑣, tid, fresh(𝑚𝑖𝑑, 𝑐)) |𝑔) 𝑐′ = (𝐿𝑐 , 𝐵𝑐 ∪ {𝑚}, 𝑆𝑂𝑐′)
𝑆𝑂𝑐′ = 𝑆𝑂𝑐 ∪ ℓ (𝜆𝑥,𝑦.{(𝑚′, 𝑥) |𝑚′ .src = 𝑥 .𝑖𝑑 ∧𝑚′ ∈ 𝑦})(𝑚, (𝐵𝑐 |𝑔))

𝑔, 𝑖𝑑 ⊢ (send(tid, 𝑒𝑣, 𝑣), 𝑐) → (skip, 𝑐′)

New
𝑖𝑑 ′ = newInstance(machineType, 𝑐)

𝑐′ = (updateUnderG(𝐿𝑐 , 𝑖𝑑 ′, defaultLocals(𝑖𝑑 ′), 𝑔), 𝐵𝑐 , 𝑆𝑂𝑐)
𝑔, 𝑖𝑑 ⊢ (send(𝑖𝑑 ′, init, 𝑣), 𝑐′) →∗ (skip, 𝑐′′)

𝑔, 𝑖𝑑 ⊢ (new machineType(𝑣), 𝑐) → (skip, 𝑐′)

Raise
𝑚 = (𝑖𝑑, 𝑒𝑣, 𝑣, 𝑖𝑑, fresh(𝑚𝑖𝑑, 𝑐)) handlers, 𝑔 ⊢ 𝑐 𝑚−→ 𝑐′

𝑔, 𝑖𝑑 ⊢ (raise 𝑒𝑣 (𝑣), 𝑐) → (skip, 𝑐′)

If
𝐿𝑐 [𝑖𝑑], 𝑔 ⊢ 𝑒 ↓ 𝑣 𝑔0 = 𝑔 ∧ getGuardFor (𝑣,⊤)

𝑔1 = 𝑔 ∧ getGuardFor (𝑣,⊥) 𝑔0, 𝑖𝑑 ⊢ (𝑆0, 𝑐) →∗ (skip, 𝑐′)
𝑔1, 𝑖𝑑 ⊢ (𝑆1, 𝑐′) →∗ (skip, 𝑐′′)

𝑔, 𝑖𝑑 ⊢ (if 𝑒 then 𝑆0 else 𝑆1, 𝑐) → (skip, 𝑐′′)

Choose
𝐵 = getFreshGuardVariables(⌈log(|V |)⌉)

𝑉 = {𝑣1, . . . , 𝑣 |𝑉 | }
𝑣 = 𝑀 ({(𝑣𝑖 |encodeUsing(𝑖, 𝐵, |𝑉 |))}𝑖=1.. |𝑉 |)

𝑔, 𝐿𝑐 [𝑖𝑑] ⊢choose 𝑉 ↓ (𝑣 |𝑔)
Fig. 8. Value summary semantics for P programs

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 41

D POR REDUCTION FOR P: PRED
Here we describe Pred, a sound partial-order reduction for P programs. Our motivation for Pred
comes from the well-known approach of persistent sets [Wolper and Godefroid 1993] and how
the send-order relation used for defining P macro-step semantics relates to the independence
of transitions. We achieve Pred reduction by restricting the set of enabled transitions at each
configuration to explore only those transitions that form a persistent set [Wolper and Godefroid
1993].

A transition 𝑡𝑚 for a message𝑚 refers to the execution of𝑚.𝑡𝑔𝑡 ’s event handler on𝑚.𝑣 . The
set of all possible transitions for a system is given by the set T . We overload enabled and let
enabled(𝑐, 𝑡𝑚) = enabled(𝑐,𝑚).
Independence of transitions.We use the notion of independence of transitions similar to that
defined in the TransDPOR reduction for actor systems [Tasharofi et al. 2012].

Definition D.1 (Dependence). Two transitions 𝑡𝑚, 𝑡𝑚′ ∈ T are independent iff for all configurations
𝑐 ∈ C:
- If 𝑡𝑚 is enabled in 𝑐 and (𝑐, 𝑐′) ∈ 𝑡𝑚 , then 𝑡𝑚′ is enabled in 𝑐′ iff it is enabled in 𝑐 (i.e., independent
transitions cannot disable or enable eachother). Formally, enabled(𝑐, 𝑡𝑚′) ⇔ enabled(𝑐′, 𝑡𝑚′).

- If 𝑡𝑚 and 𝑡𝑚′ are both enabled in 𝑐 , then there exists a unique configuration 𝑐′ such that 𝑐
𝑚
==⇒

𝑘
𝑚′
==⇒ 𝑐′ and 𝑐

𝑚′
==⇒ 𝑘 ′

𝑚
==⇒ 𝑐′ for some configurations 𝑘, 𝑘 ′ (i.e., enabled independent transitions

commute). Formally, enabled(𝑐, 𝑡𝑚) ∧ enabled(𝑐, 𝑡𝑚′) ⇒ 𝑡𝑚′ (𝑡𝑚 (𝑐)) = 𝑡𝑚 (𝑡𝑚′ (𝑐)) = 𝑐′

Transitions that are not independent are dependent.
POR exploits independence to determine interleavings that are Mazurkiewicz-

equivalent [Mazurkiewicz 1986], i.e., a class of interleavings that can be obtained by commuting
adjacent independent actions. Exploring only one representative interleaving from each equivalence
class is sound for checking safety properties, e.g., local assertions, or absence of data races and
deadlocks.

D.1 Persistent-set-based reduction
Many POR algorithms [Wolper and Godefroid 1993] rely on computing persistent sets. Persistent
sets give a set of transitions for a configuration such that it is sound to explore only interleavings
of transitions in the persistent set [Wolper and Godefroid 1993]. In particular, all configurations
reachable by executing transitions outside a persistent set do not interact with the persistent set,
so it is sound not to explore interleavings of transitions within the persistent set with those outside
of it.

Definition D.2 (Persistent Set). A set of enabled transitions P𝑐𝑖 ⊆ T in a configuration 𝑐𝑖 are
persistent in 𝑐𝑖 iff, for all executions starting from 𝑐𝑖 in which only transitions 𝑡𝑚𝑖

∉ P𝑐𝑖 are taken
(0 ≤ 𝑖 ≤ 𝑛), 𝑡𝑚𝑖+𝑛 is independent with all transitions in P𝑐𝑖 [Wolper and Godefroid 1993].

Reduced P semantics. Motivated by the idea of persistent sets, we present a restricted semantics
of P that explores only transitions that are within persistent sets for the current configuration.
This semantics thus can be considered to be a sound reduction of the P macro-step semantics. The
justification for the persistent sets is based on the P semantics, and thus the reduction achieved
applies for all P programs.

This restricted semantics makes use of a version of the 𝑆𝑂𝑐 relation, augmented with additional
causality information: The <𝑐 relation is the transitive closure of the relation <𝑐= 𝑆𝑂𝑐 ∪ {𝑚0 ⊳𝑚1 |
𝑚0,𝑚1 ∈ M}, where any two message 𝑚0,𝑚1 are such that 𝑚0 ⊳𝑚1 if the event handler that

, Vol. 1, No. 1, Article . Publication date: June 2023.

42 Lauren Pick, Ankush Desai, and Aarti Gupta

receives𝑚0 is responsible for sending𝑚1. This relation accounts for the order in which messages
were sent by a given machine, including the send order ⊳ of any newly sent messages, and the
order between messages sent at different steps.
For any three transitions 𝑡𝑚 , 𝑡𝑚′ , 𝑡𝑚′′ , we have that 𝑡𝑚′′ is not enabled in configuration 𝑐 if

the following hold: (1) 𝑡𝑚, 𝑡𝑚′ enabled in 𝑐; (2) 𝑡𝑚′ sends message𝑚′′ (i.e.,𝑚′′ ∈ sends(𝑐, 𝑡𝑚′));
(3)𝑚 <𝑐 𝑚

′ (i.e.,𝑚 was sent before𝑚′); (4) 𝑡𝑚 and 𝑡𝑚′′ are not independent. From this, we can
conclude that for 𝑡𝑚, 𝑡𝑚′ enabled in configuration 𝑐 with𝑚 <𝑐 𝑚

′, taking the transition for the
“earlier” message𝑚 will not interfere with transitions for any messages sent as a consequence of
taking transition 𝑡𝑚′ .

In the restricted semantics, for each configuration 𝑐 , we thus only explore only those transitions
whose corresponding received messages are least according to the relation <𝑐 . Note that these tran-
sitions do not interfere with the remaining enabled transitions in 𝑐 . Let predicate sufficient(𝑐, 𝑡𝑚)
enforce this restriction. It is defined as:

𝑚 ∈ 𝐵𝑐 ∧ ∀𝑚′ ∈ 𝐵𝑐 .𝑚′ ≠𝑚 ⇒𝑚′ ̸<𝑐 𝑚

As in the enabled predicate, we require that no other message𝑚′ in the global buffer was sent
before𝑚 was sent, but unlike enabled, here we require this for all𝑚′ in the global buffer, rather
than just 𝑚′ sent to the same target as 𝑚. For a configuration 𝑐 , the restricted set of enabled
transitions that we use for reduction is given by the following set:

{𝑡𝑚 | ∀𝑡𝑚 ∈ T .sufficient(𝑐, 𝑡𝑚)}

Note that sufficient(𝑐, 𝑡𝑚) implies enabled(𝑐, 𝑡𝑚). By only choosing transitions in this re-
stricted set we can achieve more efficient exhaustive exploration of P programs.
To illustrate the reduction achieved, we revisit the P program from Fig. 1 in the paper. Fig. 2 in

the paper shows all executions allowed by the P macro-step semantics, where each path through
the tree corresponds to an execution where each node is a configuration and each edge label is a
step in the execution. The executions allowed by the restricted P semantics are shown by the full
tree. From this example, we can see the benefits of using Pred to explore P programs; Pred allows
fewer interleavings, leading to more efficient exploration of program behaviors. Further reductions
can be achieved using additional partial-order reductions (see §6.2 of the paper).

D.2 Soundness of Pred
Theorem D.3 (Pred Computes Persistent Sets). In P semantics, for any sequence of steps from

an initial state 𝐸𝑐 ending in configuration 𝑐 , the set of transitions given by the following is a persistent

set:

{𝑡𝑚 | ∀𝑡𝑚 ∈ T .sufficient(𝑐, 𝑡𝑚)}

Proof. Let 𝐸𝑐 , 𝑐 be such an sequence of steps and configuration, and let Persistent denote the set
of transitions that we need to show is a persistent set. Let 𝑡𝑚 ∈ Persistent be an arbitrary transition
enabled in 𝑐 . Consider an arbitrary nonempty sequence of steps 𝑆 resulting from taking allowed
transitions from 𝑐 = 𝑐 𝑗 , where 𝑡𝑚𝑖

∉ Persistent𝐶 :

𝑐 𝑗 →𝑚 𝑗
𝑐 𝑗+1 →𝑚 𝑗+1 𝑐 𝑗+2 →𝑚 𝑗+2 . . .→𝑚 𝑗+𝑛 𝑐 𝑗+𝑛+1

To show that Persistent𝑐 is persistent, we need to show that 𝑡𝑚 𝑗+𝑛 and 𝑡𝑚 are independent.
We will show the stronger property that 𝑡𝑚 𝑗+𝑛 and 𝑡𝑚 are independent and 𝑡𝑚 is enabled in 𝑐 𝑗+𝑛

with𝑚 ≺𝑐 𝑗+𝑖 𝑚 𝑗+𝑖 for all 0 ≤ 𝑖 ≤ 𝑛.
By strong induction on 𝑛:

, Vol. 1, No. 1, Article . Publication date: June 2023.

Psym: Efficient Symbolic Exploration of Distributed Systems 43

Base Case. For 𝑛 = 0, from the definition of sufficient and enabled, we know that𝑚 <𝑐 𝑗 𝑚 𝑗

and that 𝑚 𝑗 .𝑡𝑔𝑡 ≠ 𝑚.𝑡𝑔𝑡 , so 𝑡𝑚 𝑗
and 𝑡𝑚 are independent. We also have from the definition of

Persistent that 𝑡𝑚 is enabled.

Induction Step. We assume the inductive hypothesis that for all 0 ≤ 𝑘 < 𝑛, 𝑡𝑚 𝑗+𝑘 and 𝑡𝑚 are
independent and 𝑡𝑚 is enabled in 𝑐 𝑗+𝑘 with𝑚 <𝑐 𝑗+𝑛 𝑚 𝑗+1 for all 0 ≤ 𝑖 ≤ 𝑘 . From this inductive
hypothesis, we know that 𝑡𝑚 is enabled in 𝑐 𝑗+𝑛 From 𝐸𝑐 , we know that 𝑡𝑚 𝑗+𝑛 is also enabled in
configuration 𝑐 𝑗+𝑛 . There thus must be a 0 ≤ 𝑖 < 𝑛 such that𝑚 𝑗+𝑛 was sent by 𝑡𝑚 𝑗+𝑘 in configuration
𝑐 𝑗+𝑘 . From our inductive hypothesis, we have that that𝑚 <𝑐 𝑗+𝑘 𝑚 𝑗+𝑘 . It follows that𝑚 <𝑐 𝑗+𝑛 𝑚 𝑗+𝑛
also holds. If 𝑡𝑚 and 𝑡𝑚 𝑗+𝑛 have the same actor, then only one of them can be enabled in 𝑐 𝑗+𝑛 as
per the definition of enabled. Thus, we know that 𝑡𝑚 and 𝑡𝑚 𝑗+𝑛 have different actors. Furthermore,
we also know that neither𝑚 is sent by 𝑡𝑚 𝑗+𝑛 nor𝑚 𝑗+𝑛 is sent by 𝑡𝑚 because both transitions are
enabled at the same configuration, so 𝑡𝑚 and 𝑡𝑚 𝑗+𝑛 are independent. □

, Vol. 1, No. 1, Article . Publication date: June 2023.

	Abstract
	1 Introduction
	2 Motivating Example and Key Ideas
	2.1 P Language
	2.2 Motivating Example in P
	2.3 Systematic Exploration: Baseline Macro-step Semantics and POR for P
	2.4 Symbolic Stateful Exploration Using Value Summaries

	3 Adapting Macro-step Semantics for P
	3.1 Notation for P Semantics
	3.2 Macro-step Semantics for P

	4 Symbolic Representation of Configurations: Value Summaries
	4.1 Identifying Overlapping Transitions
	4.2 Requirements on Symbolic Representations of Configurations
	4.3 Value Summaries for Configurations of Distributed Systems
	4.4 Canonicity of Value Summaries

	5 Symbolic Stateful Exploration using Value Summaries
	5.1 Lifting Values and Functions to Value Summaries
	5.2 Lifted Semantics for P Programs
	5.3 Exploring a single execution in P
	5.4 Symbolic Stateful Explorer
	5.5 Symbolic Exploration with Fixed-point Detection

	6 Symbolic Exploration with Abstractions and Reductions
	6.1 Abstract Value Summaries
	6.2 Partial-Order and Other Reductions as Filters

	7 Illustrative Case Study: Abstractions and Fixed Points
	8 Evaluation
	8.1 Q1: Comparison with TLC (Model Checker for TLA+)
	8.2 Q2: Evaluation on P Programs from Previous Papers
	8.3 Q3: Verifying Industrial Case Studies: Distributed Storage and Database Protocols
	8.4 Q4: Verifying Infinite-state Systems and Comparison with Other Approaches

	9 Related Work
	10 Conclusions
	References
	A Proof of Canonicity for Value Summaries
	B Lifting of Common Composite Data Structures and Operations
	B.1 Primitives
	B.2 Tuples
	B.3 Lists
	B.4 Sets
	B.5 Maps

	C Lifted Semantics for P
	D POR Reduction for P: Pred
	D.1 Persistent-set-based reduction
	D.2 Soundness of Pred

