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Clients rely on database systems to be correct, which requires the system not only to implement transactions’
semantics correctly but also to provide isolation guarantees for the transactions. This paper presents a client-
centric technique for checking both semantic correctness and isolation-level guarantees for black-box database
systems based on observations collected from running transactions on these systems. Our technique verifies
observational correctness with respect to a given set of transactions and observations for them, which holds
iff there exists a possible correct execution of the transactions under a given isolation level that could result
in these observations. Our technique relies on novel symbolic encodings of (1) the semantic correctness of
database transactions in the presence of weak isolation and (2) isolation-level guarantees. These are used
by the checker to query a Satisfiability Modulo Theories solver. We applied our tool Troubadour to verify
observational correctness of several database systems, including PostgreSQL and an industrial system under
development, in which the tool helped detect two new bugs. We also demonstrate that Troubadour is able to
find known semantic correctness bugs and detect isolation-related anomalies.
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1 Introduction

Clients typically treat database management systems (DBMSs) as black boxes that they interact
with by issuing transactions and receiving responses. These DBMSs are assumed to be correct.
That is, they are assumed to correctly implement the semantics of transactions’ operations on
the underlying database and to correctly enforce the isolation levels – specifications that restrict
concurrent transactions’ ability to see and influence each others’ effects – that they claim to provide.
Examples of common isolation levels provided by DBMSs include snapshot isolation, which allows
transactions to read only from a single “snapshot” of the database state and disallows writes to any
values that have changed since the snapshot, and read committed, which allows a transaction to
read any previous committed values from any database state. While ensuring the correctness of
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DBMS executions is possible with a verified DBMS [38], this is not practical for clients who cannot
tolerate performance overheads or otherwise wish to use proprietary DBMSs.
In the absence of a verified DBMS, we would like to be able to audit responses from the DBMS

to ensure that implementation bugs do not affect the behavior of a client application. In particular,
for a given log of a DBMS responses, we would like a guarantee of observational correctness – i.e., a
guarantee that the client has seen a correct operation of the DBMS. To solve the DBMS correctness

auditing problem, in this paper, we answer the following question:

How do we verify that a DBMS’s observed responses are correct for a set of arbitrary transactions?

Existing tools. Existing tools for bug-finding and isolation checking are ill-suited for solving this
general DBMS correctness auditing problem. Testing tools, while effective for identifying bugs
during DBMS development, cannot verify observational correctness for arbitrary logs. Furthermore,
most (but not all [8]) testing tools for DBMSs focus only on finding semantic bugswithin transactions
and are thus unable to find isolation-related bugs. On the other hand, many isolation checking
tools can perform some form of auditing for isolation correctness, but they assume semantic
correctness and do not support arbitrary transactions. Many techniques based on Adya’s formalism
for describing isolation levels rely on seeing all transactions’ read and written values [6, 8, 21, 27,
34, 40], which are not always available in practice. For example, a conditional update in SQL will
not return the values read and written during the statement’s execution.
DBMS correctness auditor. We propose a method for verifying observational correctness of a set of
arbitrary transactions run on a DBMS by reduction to Satisfiability Modulo Theories (SMT) solving.
This method must show that observations collected (e.g., in client-side logs) for the transactions
are consistent with both the semantics of the transactions and the DBMS-specified isolation level.
Our approach is based on the observation that semantic correctness and isolation levels are

related: the former relies on correct values being read, and the latter influences what values can be
read. Semantic correctness can be viewed informally as the property that if correct values are read
for the given transaction, then the implementation of the transaction’s behavior is correct according
to the semantics for the language in which the transactions are written. Isolation levels can then be
viewed as constraints on what values can be read or written by a transaction.

This observationmotivates the two key components behind our approach: (1) a symbolic encoding
of the nondeterminism in which database states a transaction reads from, which we use to generate
symbolic semantic correctness constraints for transactions, and (2) a symbolic encoding of isolation
constraints based on the constraints from the formulation by Crooks et al. [12]. We can conjoin
the semantic and isolation constraints to yield an SMT formula that is satisfiable iff the overall
observational correctness property holds.

Directly posing this formula as an SMT query, however, performs poorly in practice because the
formula often requires complex theory reasoning and contains irrelevant constraints. To address
this, we present a method for generating a simpler SMT encoding of observational correctness
based on a novel fine-grained representation of database states and an operational semantics that
works over this representation to generate constraints.

We implemented an automated checker Troubadour based on our symbolic encoding of obser-
vational correctness. It can handle a fragment of SQL and common isolation levels. In particular, in
addition to the snapshot isolation (SI) and read comitted (RC) levels mentioned above, it supports
serializability (S), which allows a transaction only to read from the previous transaction’s committed
database state for some sequential ordering of transactions; strict serializability (SS), which is like
serializability except that the sequential ordering of transactions must be according to transactions’
start and end times; and strict snapshot isolation (SSI), which is like SI except that the snapshot
must be taken at the transaction start time. As generation of semantic and isolation constraints are
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T0 T1 T2 T3 T4

Transaction 1

Transaction 2
Transaction 3

Transaction 4

T5

Implementation: 

CALL Deposit(2, 100) 
Implementation: 

CALL Transfer(1, 2, 10) 

Implementation: 

SELECT balance FROM accounts 

WHERE id = 2 

Result: balance
420

Implementation: 

CALL Transfer(1, 2, 10) 

Fig. 1. Sample set of committed transactions and their observations. Each transaction’s leftmost and rightmost

times respectively indicate its start and commit times.

decoupled, it is easy to extend Troubadour to support other transaction description languages
or isolation levels. Experiments demonstrate Troubadour can detect violations of both semantic
and isolation correctness as well as prove observational correctness for logged transactions. We
used Troubadour to check widely-used DBMS PostgreSQL [29] as well as an under-development
industrial DBMS, in which its use led to the discovery of two new bugs.
Contributions. We make the following main contributions:
• We present a formal definition of observational correctness for a black-box DBMS (§3). This
is to our knowledge the first such definition encompassing both semantic correctness and
isolation guarantees.
• We formulate a symbolic encoding of observational correctness for DBMSs, which relies on a
lifting of the constraints proposed by Crooks et al., to the symbolic setting (§6) and encoding
the nondeterminism in transaction reads (§5).
• We propose a method that uses a novel partially-symbolic representation of database states to
generate a simpler encoding of observational correctness (§5.2), and an incremental checking
technique based on it (§7).
• We implemented a tool Troubadour that can handle a sizable fragment of SQL and used it
to check both semantic- and isolation-related correctness properties of DBMSs (§8).

2 Motivating Example

Let us consider a simple banking application backed by a relational database. We consider three
kinds of transactions: transfers, which transfer a specified amount of money from a source account
to a target one; deposits, which deposit a specified amount into a target account; and balance-checks,
which return the balance of a specified account. Account information is stored in a table with two
columns: id, which contains bank account id numbers, and balance, which contains the bank
balances. Bank accounts are identified with their id numbers. We assume the initial state is one
where account 1 has balance 100 and 2 has balance 300 and that the DBMS claims to provide the
isolation level SSI. This level imposes two constraints on transactions’ reads and writes: constraint
RMR specifies that each transaction takes a snapshot of the committed database state at its start time
and operates over the data in that snapshot; and constraint NWC specifies that, for a transaction to
commit, it must not modify any data that has been modified and committed in between its start
and commit time. Formal definitions of SSI and other isolation levels are provided in §6.

We want to prove that the DBMS exhibits observational correctness for given a set of transactions
and observations for them that were collected from a run of the DBMS; i.e., we want to show
that there exists a possible correct execution trace of the DBMS that could produce the observed
responses. If no such trace exists, there is no possible correct behavior of the DBMS that could have
led to the observations, indicating a bug. In practice, observations, which include DBMS responses
resulting from issued transactions, can be collected in a client-side log.
Let us consider checking four committed transactions with start and commit times as shown

in Fig. 1. We assume time 𝑇𝑖 precedes time 𝑇𝑗 for 𝑖 < 𝑗 and associate each transaction 𝑛 with
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CREATE PROCEDURE Deposit (IN tgt INT ,

IN amt DECIMAL (12,2))

BEGIN

UPDATE accounts

SET balance = balance + @amt

WHERE acc_id = @tgt;

END;

CREATE PROCEDURE Transfer (IN src INT , IN tgt INT ,

IN amt DECIMAL (12,2))

BEGIN

CALL Deposit(@tgt , @amt);

UPDATE accounts SET balance = balance - @amt

WHERE acc_id = @src;

END;

Fig. 2. Procedures implementing deposits and transfers in MySQL syntax.

Transactions
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∧
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Fig. 3. Verifying observational correctness of a DBMS.

transaction ID 𝑛. We assume start and commit times are observable, as these are necessary to check
the constraints for SSI. (These start and commit times are not required for non-strict isolation
levels.) The behaviors of these transactions as well as the information in the observations (start
and commit times, as well as results from the DBMS) that we collect from running them on our
hypothetical DBMS are shown in the bubbles in Fig. 1. The figure omits the commit status of the
transactions, which is also collected as part of the observations, as the transactions that have all
committed. Behaviors are specified using calls to SQL stored procedures shown in Fig. 2, except for
balance-check transactions, which consist of SELECT statements: Transaction 1 transfers 10 from
account 1 to 2, transaction 2 deposits 100 into account 2, transaction 3 transfers 10 from account 1
to 2, and transaction 4 returns the balance of account 2.
Observations in Fig. 1 come from an incorrect execution of the transactions that violates the

isolation guarantees for SSI: as transactions 2 and 3 both modify the balance for account 2, we can
see that transaction 3 should not be able to commit without violating NWC.

Note that other than balance-check transactions, which return the results of the SELECT statement,
none of the transactions return any information about read or written values. For example, for
the Transfer transaction implemented as shown in Fig. 2, the typical behavior of a DBMS would
be to return neither the rows written by the UPDATE statement nor the values written to them,
requiring reasoning about transaction semantics to detect this isolation guarantee violation. We
will demonstrate how our approach uses knowledge of the transactions’ semantics and isolation
level guarantees to conclude this is the case.

2.1 Verifying Observational Correctness

Verifying observational correctness is challenging in the presence of different isolation levels,
which differ in the extent to which they isolate transactions from each others’ effects. They
may, for example, allow transactions to see results of not-yet-committed transactions, leading
to nondeterminism in transactions’ reads and writes. For a serializable isolation level, where
transactions must behave as if they execute one after another, we could verify observational
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correctness of a DBMS for a log by finding an order of the transactions such that executing the
transactions in order yields results that match the collected observations in the log. For non-
serializable isolation levels, though, we cannot directly use such an approach because transactions
may read from (potentially several) past database states. In this work, we enable a similar approach
to the one just described for logs of serializable transactions by using a semantics that symbolically

encodes the nondeterminism in which database state is read from.
Fig. 3 shows our overall approach. We rely on a partially-symbolic semantics that maintains

some database state information concretely for efficiency. This semantics is instrumented to collect
additional information about which states each transaction read from in the form of read records.
Running the semantics to completion for a transaction yields a partially-symbolic representation
of sequences of system states 𝑑𝑠 and expected database system response 𝑟𝑠 after the transaction, a
formula C encoding semantic constraints on the symbolic variables in ⟨𝑑𝑠 , 𝑟𝑠⟩, and the transaction’s
read record. These are then used to produce, respectively, the semantic correctness constraint 𝜙 –
which includes C but also encodes that the expected results match those observed in actual DBMS
responses – and the isolation correctness constraint𝜓 , which expresses whether the read records
are consistent with a given isolation level. These constraints are then conjoined and given to an SMT
solver. If the conjunction is satisfiable (indicated by ✓), then the transactions are observationally
correct. If unsatisfiable (indicated by ✗), then they are not.

We use identifiers to represent states that were read from. These state identifiers appear both in
read records and the symbolic representations of values in our DBMS state representation. All the
states we need to refer to result from transaction commits, so we will identify a state using index
𝑖 if it resulted from the commit of transaction 𝑖 . For now, to be compatible with all the isolation
levels we consider in this work (SS, S, SSI, SI, and RC), the semantics considers a transaction as
being able to read from all possible committed states. (It is fairly straightfoward to extend our
approach to also handle other isolation levels that allow transactions to read from uncommitted
states as well by also keeping track of uncommitted states in the semantics.) We consider further
isolation-level-related constraints after encoding the semantic constraints.

Transaction 1. There is only one state to read from: the initial one at 𝑇0. The commit results in a
new state at time 𝑇1 where account 1 has balance 90 and 2 has balance 310. That these accounts
have these balances at this time is captured in the representation of system states 𝑑𝑠1 produced by
the partially-symbolic semantics. The semantics also produces semantic constraint C1, which is
true. There are no observations so far, so the semantic correctness constraint for the log containing
only this transaction would be true. The isolation correctness constraint would similarly be true.

Transaction 2. This deposit transaction reads from and writes to the balance of account 2. There
are two possible states that can be read from: the initial one at 𝑇0 and one at 𝑇1. We capture
this nondeterminism in the partially-symbolic semantics by modeling the read as being from
the state associated with symbolic state identifier id𝑠 . The read balance is then represented as
ite(id𝑠 ≥ 1, 310, 300), with ite meaning “if-then-else.” This expresses that if the transaction reads
the balance from a state resulting from transaction 1’s commit or later, it reads value 310, but
otherwise it reads value 300. The value the transction writes is thus ite(id𝑠 ≥ 1, 310, 300) + 100,
which we simplify to ite(id𝑠 ≥ 1, 410, 400). This symbolic written value is stored in 𝑑𝑠2 produced by
the partially-symbolic semantics. The constraint C2 generated by the semantics is simply true, and
because there are no observations for this or the previous transaction, the semantic correctness
constraint is just true for the first two transactions in the log.

The read records indicate that a read was performed on symbolic state id𝑠 . The isolation constraint
that we generate for SSI should require that id𝑠 identifies the latest committed state before time 𝑇2
– the start time of transaction 2 (for the RMR constraint). Since no transaction committed between
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𝑇1 and 𝑇2, we do not need to check if there has been a conflicting write to the balance of account 2
(NWC is trivially true). The isolation constraint for the log up to this point is thus id𝑠 = 1.

As the conjunction true∧id𝑠 = 1 of the semantic and isolation correctness constraints is satisfiable,
we conclude that the execution of transactions 1 and 2 is observationally correct. Furthermore, a
satisfying assignment for this conjunction determines a possible concrete execution trace that is
correct. In this case, the only satisfying assignment has id𝑠 = 1 and the balance of account 2 after
the commit as 410, as expected for SSI.
Transaction 3. This transaction makes a transfer from account 1 to 2, requiring reads of balances
for both accounts 1 and 2 at respective symbolic states with symbolic identifiers id𝑠1 and id

𝑠
2. Let us

focus particularly on the balance of account 2. The partially-symbolic semantics determines that
transaction 3 reads balance1 as account 2’s balance, where we define balance1 to be the following:

balance1 ≡ ite(id𝑠2 ≥ 2, ite(id𝑠 ≥ 1, 410, 400), ite(id𝑠2 ≥ 1, 310, 300))
When transaction 3 commits, the balance will therefore be balance1 + 10. This information is
recorded in 𝑑𝑠3 produced by the symbolic semantics.
The isolation constraint for SSI will contain conjunct id𝑠2 = 1 for the RMR constraint. It also

needs to express that the balance read for account 2 by transaction 2 should be the same as it was
for the state with identifier id𝑠2. The only state resulting from a commit between𝑇2 and𝑇4 is the one
committed at 𝑇3, where the balance for account 2 is ite(id𝑠 ≥ 1, 410, 400), so we have the following
conjunct in NWC: ite(id𝑠 ≥ 1, 410, 400) = balance1.
When conjoined with the other conjuncts id𝑠 = 1 (learned from checking transaction 2) and

id
𝑠
2 = 1 (the RMR constraint) to yield the isolation constraint for the first three transactions

in the log, the result is unsatisfiable, indicating the observations came from an incorrect DBMS
implementation that violates guarantees for SSI. While it is clear that we had to use knowledge of
isolation guarantees to detect this bug, we also had to reason about semantics to determine if and
when account 2 had its balance written to – i.e., we had to consider the possible values of balance1,
since it occurs in our isolation constraint.
Returned results. To see how we use the returned results in DBMS responses to check observa-
tional correctness, let us modify our example slightly so that our set of transactions now excludes
transaction 3. Behaviors of transactions 1 and 2 are as above. We now consider transaction 4.

The partially-symbolic semantics produces a partially-symbolic expected DBMS response 𝑟𝑠 that
represents the read balance of account 2 as expression balance2, defined below:

balance2 ≡ ite

(
id

𝑠
4 ≥ 3, ite(id𝑠 ≥ 1, 410, 400), ite(id𝑠4 ≥ 1, 310, 300)

)
for a fresh symbolic state id𝑠4. There are three possible states id

𝑠
4 could identify: the initial one, the

one with identifier 1, and the one with identifier 3. Expression balance2 captures the result for each
possibility. The semantic correctness constraint 𝜙 must encode that the observed return result and
the one computed using the symbolic semantics are the same, expressed by conjunct 420 = balance2.
As this is unsatisfiable, we conclude the DBMS implemented the transaction semantics incorrectly.

3 Observational Correctness

In this section, we formally define observational correctness.

3.1 States, Transactions, and Execution Traces

We first introduce several notions that we will use to define observational correctness.
Database state. A database state is a map ℓ ∈ L from keys to values. Maps ℓ clearly allow us to
model databases that are key-value stores, but we can also use them to model relational databases
using key-value pairs in ℓ , by letting a key 𝑘 be a pair of a table name 𝑘.tbl and a row id 𝑘.id and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 139. Publication date: April 2025.



Checking Observational Correctness of Database Systems 139:7

letting values be rows for the particular row id in the table. Each row itself is a map from a column
name to that column’s value for the row.
As in related work [8], our row ids are the result of associating every row of the table with a

unique id. A table is then a map from keys to values in which all keys 𝑘 have the same table name
𝑘.tbl and all rows have the same type. A table in ℓ with name tbl is the subset ℓ of keys 𝑘 with
𝑘.tbl = tbl. For simplicity, we have assumed tables are never created nor deleted and any needed
tables exist in the initial database state. To support creation/deletion, database states should instead
be pairs of maps: one to describe whether the table exists and one that is ℓ as described. While in
our implementation, we use this formulation of database states and model relational databases, for
simplicity, we will treat database states as just maps ℓ .
System state. A system state 𝑠 = ⟨ℓ, 𝑟 ⟩ consists of database state ℓ and possibly-empty (denoted 𝜀)
read result 𝑟 , which is also a map from keys to values. The read result 𝑟 is either the observable result
of a transaction or an intermediate result to be consumed in subsequent transaction operations.
Transaction description language. A transaction description language (TDL) is a programming
language (e.g., SQL) used to specify a transaction’s behavior; it is assumed to have an associated
operational semantics, assumptions on which we describe in §3.2.
Transaction. A transaction tr is a pair of a unique transaction identifier and a set of statements
stmt(tr𝑖 ) in a given TDL. We use T to denote sets of transactions. Our definition of transaction
differs from other work in that we do not know a priori the read and write set of the transaction,
and instead must reason about the semantics of stmt(tr𝑖 ).
Transition. A system state 𝑠𝑖−1 can transition to 𝑠𝑖 and produce output 𝑜𝑖 ∈ O via a transaction
tr𝑖 ∈ T , denoted 𝑠𝑖−1

tr𝑖 :𝑜𝑖−−−−→ 𝑠𝑖 . An output 𝑜 of a DBMS is a record (𝑟, 𝑐, start, end), where read result
r(𝑜) = 𝑟 is the observed result of a transaction as returned in a DBMS response, committed(𝑜) = 𝑐 is
a Boolean indicating if the transaction committed successfully, start(𝑜) = start is the transaction’s
start time if available or else is ⊥, and end(𝑜) = end is the transaction’s end time or else is ⊥. If
committed(𝑜𝑖 ), then state 𝑠𝑖 is a committed state, and is in particular the state committed by tr𝑖 .
Execution trace. An execution trace (also called a trace) 𝑒 for a set of transactions {tr𝑖 }𝑖 is a
sequence of transitions 𝑠0

tr1:𝑜1−−−−→ · · · tr𝑛 :𝑜𝑛−−−−→ 𝑠𝑛 .
We use traces to describe the logged behavior of a (potentially buggy) DBMS implementation on

a set of transactions, where system state 𝑠𝑖 , reached via a transition via transaction tr𝑖 , represents
the DBMS state after executing transaction tr𝑖 . The definition of trace allows for arbitrary, possibly
semantically-incorrect traces, as traces may result from buggy runs of DBMS implementations. We
define semantic correctness of a trace in §3.3.

3.2 Version-Aware TDL Semantics

Correctness of a trace is defined with respect to a given TDL semantics, which describes TDL
operations on single database states. Under weaker isolation levels, transactions may be allowed
read from from any of a set of readable database states, so we adapt the TDL semantics to allow for
this, yielding a version-aware transaction description language (VA-TDL) semantics.
To reason about the semantic correctness in the presence of non-serializable isolation levels,

we need to allow a transaction read from potentially all possible committed database states in the
trace. In general, these need not be only committed database states but also intermediate ones that
occur during the execution of transactions, including ones that abort. For simplicity, we consider
allowing a transaction to read from only committed database states, allowing us to reason about
behaviors for RC and stronger isolation levels.
Assumptions on TDL semantics. We assume the TDL semantics is an operational semantics
with steps (stmts, 𝑠) ↩→ (stmts

′, 𝑠 ′), where stmts is a sequence of TDL statements. An execution of
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Read
is = {𝑘 ↦→ 𝑖 | 𝑘 ∈ Dom(𝑑), 𝑖 ∈ Dom(𝑑 [𝑘 ]) } (c1)

ℓ = {𝑘 ↦→ readVal(𝑤,𝑑, 𝑘, is) | 𝑘 ∈ Dom(𝑑) } (c2) (stmts, ⟨ℓ, 𝑟 ⟩) ↩→ (stmts
′, ⟨ℓ, 𝑟 ′⟩) (c3)

𝑑 ⊢ (stmts, ⟨𝑤, 𝑟 ⟩) ⇝ (stmts
′, ⟨𝑤, 𝑟 ′⟩)

Read-Free
ℓ = {𝑘 ↦→ dummy | 𝑘 ∈ Dom(𝑑) \ Dom(𝑤) } ∪ 𝑤 (c4)

(stmts, ⟨ℓ, 𝑟 ⟩) ↩→ (stmts
′, ⟨ℓ′, 𝜀 ⟩) (c5) 𝑤′ = {𝑘 ↦→ ℓ′ [𝑘 ] | 𝑘 ∈ Dom(ℓ′) ∧ ℓ′ [𝑘 ] ≠ dummy} (c6)

𝑑 ⊢ (stmts, ⟨𝑤, 𝑟 ⟩) ⇝ (stmts
′, ⟨𝑤′, 𝜀 ⟩)

Fig. 4. VA-TDL semantics rules.

the semantics completes when the sequence of statements is empty, denoted 𝜖 . We assume semantic
steps can be divided into read steps, which do no writes (so 𝑠 .ℓ = 𝑠 ′.ℓ) and, read-free steps, which
do no reads and consume intermediate read results (so 𝑠 ′.𝑟 = 𝜀).
State maps. As mentioned previously, our VA-TDL semantics must allow transactions to read
nondeterministically from sets of database states. We use unique identifiers to identify readable
states and model the choice in which state to read from as a choice over identifiers.

We represent a set {ℓ𝑖 }𝑛𝑖=1 of different versions of database states (identified by their indices) as
state maps 𝑑 . The state map 𝑑 maps from keys and state identifiers 𝑖 to values such that ℓ𝑖 [𝑘] =
𝑑 [𝑘] [𝑖]. We use 𝐷 ({ℓ𝑖 }𝑛𝑖=1) to denote the state map that represents database states {ℓ𝑖 }𝑛𝑖=1.

Example 3.1. The initial database state and the one after transaction 1 in §2 are captured by the
state map 𝑑 , with relevant entries for account 1 for state identifiers 0 and 1 as follows:

𝑑 [accounts, 1] [0] = {id ↦→ 1, balance ↦→ 100}
𝑑 [accounts, 1] [1] = {id ↦→ 1, balance ↦→ 90}

VA-TDL semantics. Given a TDL semantics that satisfies our assumptions, we can derive a
VA-TDL semantics with steps 𝑑 ⊢ (stmts, ⟨𝑤, 𝑟 ⟩) ⇝ (stmts

′, ⟨𝑤 ′, 𝑟 ′⟩), where the context state map
𝑑 represents all readable database states for the transaction, write map 𝑤 is a map from keys to
values written to them so far by the transaction, and 𝑟 is a read result.

The derivation of the VA-TDL semantics is shown in Fig. 4. The Read rule shows how to
handle the case in which the corresponding next TDL step would perform a read. A state identifier
𝑖 ∈ Dom(𝑑 [𝑘]) is nondeterministically chosen per key 𝑘 in the database (c1) to indicate the
database state from which it should be read. A database state ℓ is then constructed based on these
identifiers using readVal (c2), which ensures that transactions read their own writes:

readVal(𝑤,𝑑, 𝑘, is) ≡
{
𝑤 [𝑘] if 𝑘 ∈ Dom(𝑤)
𝑑 [𝑘] [is[𝑘]] otherwise

If the current transaction has not written to key 𝑘 , then the read value is the one at the database
state with identifier is[𝑘], but otherwise the read value is the latest one written by the transaction.
The TDL semantics then updates the read result to yield 𝑟 ′ (c3).

The Read-Free rule handles the case in which the corresponding next TDL step would be
read-free. It constructs a stand-in database state ℓ to be updated by the TDL semantics by mapping
every key not in 𝑤 to a distinguished dummy value not part of the TDL (note that these values
will not be read) and every key 𝑘 in𝑤 to𝑤 [𝑘](c4). The original TDL semantics is run on ℓ and 𝑟
(c5) to yield a new system state ⟨ℓ ′, 𝜀⟩. Writes in ℓ ′ are then added to 𝑤 to get 𝑤 ′ (c6); any key
with a non-dummy value has been written by the transaction.
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3.3 Semantic Correctness of Traces

As mentioned, the definition of a trace does not impose any semantic constraints on a transaction
tr𝑖 used to transition from state 𝑠𝑖−1 to state 𝑠𝑖 , since 𝑠𝑖 may result from a buggy execution of tr𝑖 .
We use VA-TDL semantics to define what it means for a transition to be semantically correct.

Definition 3.1 (Semantic correctness of a transition). A transition 𝑠𝑖−1
tr𝑖 :𝑜𝑖−−−−→ 𝑠𝑖 in a trace is

semantically correct iff according to VA-TDL semantics, the following two conditions hold, where
⇝∗ is the reflexive transitive closure of⇝, and 𝑑 represents the set {𝑠 𝑗 } 𝑗 of initial and committed
database states in the trace with 0 ≤ 𝑗 < 𝑖:
S1: 𝑑 ⊢

(
stmt(tr𝑖 ), ⟨∅, 𝜀⟩

)
⇝∗

(
𝜖, ⟨𝑤𝑖 , 𝑟𝑖⟩

)
, and 𝑠𝑖 is the same as 𝑠𝑖−1 but with keys whose values

are the same as in𝑤𝑖 and 𝑠𝑖 .𝑟 = 𝑟𝑖
S2: 𝑠𝑖 .𝑟 = r(𝑜𝑖 )

Condition S1 captures that the semantics terminates without error when run on the transactions,
and condition S2 captures that the transaction’s read result according to the semantics matches the

output read result for the transition.

Definition 3.2 (Semantic correctness of a trace). A trace 𝑒 is semantically correct iff every transition
in 𝑒 is semantically correct.

Example 3.2. Consider the set of transactions {tr𝑖 }4𝑖=1, which have corresponding outputs {𝑜𝑖 }4𝑖=1
as observed in Fig. 1. The trace 𝑠0

tr1:𝑜1−−−−→ · · · tr4:𝑜4−−−−→ 𝑠4 is incorrect for any system states 𝑠1, 𝑠2, 𝑠3, 𝑠4,
where 𝑠0 is the initial state where bank account 1 has balance 100 and account 2 has balance 300.

3.4 Isolation Correctness of Traces

When the appropriate isolation-related constraints hold for a trace, it is considered to be isolation
correct. Similarly to the case of semantic correctness, there is nothing in the definition of a trace
that imposes isolation-level constraints. We define isolation correctness of a trace and a given
isolation level 𝐼 in terms of isolation constraints 𝐶𝐼 on traces, described in detail in §6, where these
constraints are formulated in terms of read records produced by an instrumented version of the
VA-TDL semantics for the transitions in the trace.

Definition 3.3 (Isolation correctness). Trace 𝑒 is isolation correct iff the isolation constraint for 𝐼
holds for 𝑒 , i.e., 𝐶𝐼 (𝑒).

Our isolation correctness definition and constraints are based on a the approach by Crooks et al.
[12], in which checking isolation guarantees boils down to constructing a trace that is consistent
with observations and satisfies isolation constraints.

3.5 Observational Correctness

For a black-box DBMS, we cannot reason about all possible execution traces that a DBMS can
produce to verify its correctness. We do not even have access to actual execution traces of the
DBMS in general, as we do not have access to database states. Instead, we have access only to
observations, observed outputs from running transactions on the DBMS.
We thus formulate a notion of observational correctness of a DBMS with respect to collected

observations. To determine if it holds, we reason about the underlying execution traces the DBMS
could have produced based on the observations. Observations are collected from an actual run of
the DBMS, and are represented as a map obs from transactions tr to observed outputs 𝑜 ∈ O for tr.

Definition 3.4 (Observational DBMS correctness). A DBMS that claims to provide isolation level 𝐼
is observationally correct with respect to the observations obs gathered from running the transactions
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in T iff there exists a trace 𝑒 of transitions for T such that (O1) every transition 𝑠𝑖−1
tr𝑖 :𝑜𝑖−−−−→ 𝑠𝑖 in 𝑒

has 𝑜𝑖 = obs(tr𝑖 ) and (O2) 𝑒 is both semantically and isolation correct.

Note that in the trace 𝑒 , that must exist for observational correctness, the transitions via transac-
tions in T may appear in any order so long as 𝑒 is consistent with observations (O1) and semantics
and isolation constraints (O2). Also note that we can always construct a trace satisfying O1 using
arbitrary 𝑠𝑖 and choosing 𝑜𝑖 = obs(tr𝑖 ), but this trace may violate O2.
For convenience, we treat transactions in T as all having committed. In practice, we simply

consider the subset of T that committed, as aborted transactions should not affect results of
committed ones for isolation levels RC and stronger.

4 Conditions for Correctness

Now that we have defined observational correctness, let us consider necessary and sufficient
conditions for demonstrating it with respect to given observations obs : T → O for transactions
T . From the definition of observational correctness (Definition 3.4), we need to demonstrate the
existence of a trace that meets two requirements: (O1) its transition labels are consistent with the
observations obs, and (O2) it is both semantically and isolation correct.

Given a total ordering ≺ on T and a sequence of states (𝑠𝑖 )𝑛𝑖=0, we can generate a unique trace

𝑠0
tr1:obs (tr1)−−−−−−−−→ 𝑠1

𝑡𝑟2:obs (tr2)−−−−−−−−→ · · ·
tr𝑛 :obs (tr𝑛)−−−−−−−−→ 𝑠𝑛

where tr𝑖 ≺ tr𝑗 for 𝑖 < 𝑗 , tr𝑖 , tr𝑗 ∈ T . We refer to such an execution trace constructed from (𝑠𝑖 )𝑛𝑖=0,
T , ≺, obs as Tr((𝑠𝑖 )𝑛𝑖=0,T , ≺, obs). Note that such a trace always meets O1 (i.e., transition labels
are consistent with the observations obs) by construction. We can thus demonstrate the existence
of a trace that meets the both requirements for observational correctness by finding ≺ and (𝑠𝑖 )𝑛𝑖=0
such that Tr((𝑠𝑖 )𝑛𝑖=0,T , ≺, obs) is semantically and isolation correct, therefore meeting O2.

4.1 Checking Approach

In this paper, we assume that for the observations obs, we are given an ordering ≺ and a set
of possible initial database states L0. In practice, we can construct ≺ using commit timestamps
returned by the DBMS, where tr𝑖 ≺ tr𝑗 if tr𝑖 commits before tr𝑗 . These timestamps are often
available, though they may subject to clock drift. If we fail to show observational correctness for
a given ordering, we can use information from the failure to construct a new one; however, we
have often found the initial ordering to be sufficient in practice. We thus focus on addressing the
remaining problem of showing observational correctness by finding the sequence of states (𝑠𝑖 )𝑛𝑖=0
(with 𝑠0 = ⟨ℓ0, 𝜀⟩, ℓ0 ∈ L0) such that Tr

(
(𝑠𝑖 )𝑛𝑖=0,T , ≺, obs

)
is semantically and isolation correct.

In the sequel, we uniquely identify both these states and transitionswith indices derived from their
(would-be) position in the constructed trace. In particular, for the sequence (tr𝑖 )𝑛𝑖=1 of transactions
in T , where tr𝑖 ≺ tr𝑗 if 𝑖 < 𝑗 , we identify tr𝑖 by its index 𝑖 . Similarly, for the sequence of system
states (𝑠𝑖 )𝑛𝑖=0, we identify 𝑠𝑖 and its components by index 𝑖 . Thus, in the constructed trace, the
system or database state with index 𝑖 results from a transition via the transaction with index 𝑖 .

To verify observational correctness with respect to a set of transactions and their observations,
we search for a sequence (𝑠𝑖 )𝑛𝑖=0 such that for trace 𝑒 = Tr

(
(𝑠𝑖 )𝑛𝑖=0,T , ≺, obs

)
, (1) every transition in

𝑒 is semantically correct, and (2) 𝑒 is isolation correct. We reduce this to SMT solving by generating
encodings of semantic (§5) and isolation (§6) correctness.

5 Encoding Semantic Correctness

Wedescribe in §5.1 how to encode observational semantic correctness of a trace into SMT constraints
in the style of boundedmodel checking (BMC) [11].While this encoding is relatively straightforward,
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it yields formulas ill-suited for SMT solving because of the need to do complex theory reasoning
as well as the inclusion of irrelevant constraints on state components for proving observational
correctness. We thus introduce a partially-symbolic state representation and an improved encoding
technique based on this representation in §5.2.

5.1 BMC-Based Encoding

We first provide a brief overview of the necessary background on SMT-based model checking and
then describe a straightforward encoding of observational semantic correctness.
Transition system. A transition system𝑀 is a tuple (Σ, 𝐼 , 𝑅, 𝐿), where Σ is a set of states (note
that these states are independent of the database and system states introduced earlier), 𝐼 ⊆ Σ is a
set of initial states, 𝑅 ⊆ Σ × Σ is a transition relation, and 𝐿 is a mapping from states to a set of
atomic predicates 𝐴 that take state variables 𝑉 as arguments. We denote by 𝐿𝜎 the set of atomic
predicates for state 𝜎 ∈ Σ. For property 𝑝 and state 𝜎 , if

∧
𝐿𝜎 (𝑉 ) ⇒ 𝑝 (𝑉 ) holds, we call 𝜎 a 𝑝 state.

Paths. A path 𝜋 of a transition system𝑀 is a sequence of states 𝜎0𝜎1𝜎2 . . . (𝜎𝑖 ∈ Σ) such that 𝜎0 ∈ 𝐼
and for each 𝑅(𝜎𝑖 , 𝜎𝑖+1) for each pair of sequential states 𝜎𝑖 , 𝜎𝑖+1 in the path. If all states in a path 𝜋

are 𝑝 states for a property 𝑝 , we call 𝜋 a 𝑝 path.
Symbolic model checking. For a transition system containing only finite paths, we can prove
that there exists a 𝑝 path in the system by explicitly enumerating all paths 𝜋 of𝑀 and checking if
for any of them, whether the implication

∧
𝐿𝜎 (𝑉 ) ⇒ 𝑝 (𝑉 ) holds for every state 𝜎 in the path. A

more scalable approach is to use symbolic model checking, in which we implicitly represent sets
of states using logical formulas and perform checking by constructing a logical formula that is
satisfiable iff there exists a 𝑝 path in the transition system. We consider encoding the set of initial
states and transition relation using predicates in first-order logic, consider unrolling the symbolic
transition relation to get all paths reachable in 𝑘 steps from an initial state, and then finally add a
conjunct requiring that 𝑝 holds for all of states along the paths.
For state variables 𝑉 , we let Init (𝑉 ) be a formula capturing all the states in 𝐼 , i.e., 𝐿𝜎0 (𝑉 ) iff

Init (𝑉 ). For state variables 𝑉 and their primed versions 𝑉 ′, we also let the symbolic transition
relation 𝜌 (𝑉 ,𝑉 ′) be such that for any (𝜎, 𝜎 ′) ∈ 𝑅, 𝜌 (𝑉 ,𝑉 ′) iff 𝐿𝜎 (𝑉 ) and 𝐿𝜎′ (𝑉 ′) hold.

The 𝑘-BMC formula for the system is given below for 𝑘 + 1 versions of the state variables {𝑉𝑖 }𝑘𝑖=0:

Init (𝜎0) ∧
𝑘−1∧
𝑖=0

𝜌 (𝑉𝑖 ,𝑉𝑖+1) ∧
𝑘∧
𝑖=0

𝑝 (𝑉𝑖 ) (𝑘-BMC)

The first two conjuncts are a k-unrolling of the symbolic transition relation 𝜌 , which is satisfiable
iff there is an assignment of the variables

⋃𝑘
𝑖=0{𝑉𝑖 } to constants such that for some path 𝜎0 . . . 𝜎𝑘 in

𝑀 , 𝐿𝜎𝑖 (𝑉𝑖 ) holds for 𝑖 ∈ {0, . . . , 𝑘}. This assignment is called an interpretation I, and we denote a
FOL formula 𝐹 being satisfiable with an interpretation I as I ⊢ 𝐹 .
The final conjunct ensures that this formula is satisfiable with interpretation I iff there exists

a path 𝜎0 . . . 𝜎𝑘 in 𝑀 where for each 𝑖 ∈ {0, . . . , 𝑘}, ∧I(𝑉𝑖 ) ⇔ 𝐿𝜎𝑖 (𝑉𝑖 ) and 𝑝 (I(𝑉𝑖 )) holds. In
other words, the formula is satisfiable iff there is a 𝑝 path in the original transition system. For
completeness, we choose 𝑘 to be equal to the largest length of any path 𝜋 of𝑀 .
Encoding observational semantic correctness. To reduce the checking of observational se-
mantic correctness to symbolic model checking, we need to encode the necessary parts of the
VA-TDL semantics in the transition system𝑀 as well as the property 𝑝 . We let the system states and
transitions in traces be the states and transitions in the transition system𝑀 and define 𝜌 according
to the VA-TDL semantics so that condition S1 holds for all trace transitions iff the unrolling of 𝜌
is satisfiable. We define 𝑝 so that condition S2 holds for all trace transitions iff formula 𝑘-BMC is
satisfiable for 𝑘 chosen to be the length of the trace. (S1 and S2 are as defined in Definition 3.1).
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We capture condition S2 by defining 𝑝 to be a predicate eq that constrains corresponding values
in the 𝑖 th observed read result r(𝑜𝑖 ) and in the trace’s 𝑖 th read result si .𝑟 to be equal. For a key-value
store, eq(r(𝑜𝑖 ), si .𝑟 ) is defined to be as follows:

Dom(r(𝑜𝑖 )) = Dom(si .𝑟 ) ∧
∧

𝑘∈Dom(si .𝑟 )
r(𝑜𝑖 ) [𝑘] = si.𝑟 [𝑘]

For the set of state identifiers ID in the trace, 𝑝 (𝑉 ) is then ∧
𝑖∈ID eq(r(𝑜𝑖 ), si.𝑟 )

To preserve the types of the state variables in the SMT encoding, formulas are over a multi-sorted
first-order theory that includes all needed datatypes for the full state representation. To encode
partial maps using the theory of arrays, which only allows for the representation of total maps, we
introduce, for each partial map state variable, a corresponding map ranging over Booleans, which
we use to encode whether a particular element is in the map’s domain.

5.2 Improved Encoding

In practice, SMT solvers are unable to solve the formulas yielded by the above encoding because of
the need to do theory reasoning over arrays. We can avoid needing to do array theory reasoning
by flattening arrays and then eliminating them altogether by introducing a state variable for each
needed element of each array. This array-free encoding is possible in general so long database
states are of a known, finite maximum size; however, even this encoding is unideal.

A drawback to the removal of arrays is that the number of constraints that are added to the SMT
solver increases. While needed to fully encode the current database state, they may not be needed
for proving observational correctness. For example, constraints on a value that never influences an
observed DBMS response are irrelevant for proving observational correctness. We would like to
simplify and reduce the number of constraints given to the SMT solver to improve solving times.

Rather than maintaining the entire state in the symbolic encoding, and leaving all state reasoning
to the backend solver, we can simplify the encoding by maintaining the state outside the solver and
generating constraints only involving relevant parts of the database state. We can also do concrete
semantic reasoning when possible to avoid generating some constraints at all. In practice, this
encoding approach leads to a large improvement in solving times (see §8).

5.3 Partially-Symbolic State Representation

To generate simpler SMT encodings, we rely on a fine-grained partially-symbolic state representa-
tion, in which primitive values are represented concretely as much as possible. We use a superscript
𝑠 to indicate a possibly- (in the case of primitives) or partially- (in the case of composite data
structures) symbolic representation. A possibly-symbolic primitive 𝑣𝑠 is either a concrete value or
an SMT expression of the appropriate sort.
System states andwritemaps. We represent system states and write maps in a partially-symbolic
way by letting the value components of maps such as ℓ , 𝑟 , and𝑤 be represented by possibly-symbolic
guarded values ⟨𝑔, val𝑠⟩. Boolean formula guard 𝑔 gives the condition under which the map entry
exists, and val𝑠 represents the value itself. For maps whose values are already primitives, these val𝑠
representations are either concrete primitives or SMT expressions. When values are composite data
structures, we use a fine-grained representation where only primitives can be represented directly
with SMT expressions; composite data structures are represented with data structures containing
these SMT expressions. For example, for relational databases where the value components of the
database state map ℓ are rows, the value components of ℓ𝑠 are guarded maps from from column
names to concrete primitives or symbolic expressions. For simplicity of exposition, outside of
examples, we will assume that such value components are primitives.
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State maps. Similarly to concrete database states (§3.2), we represent a set of partially-symbolic
database states {ℓ𝑠𝑖 }𝑛𝑖=1 as a partially-symbolic state map 𝑑𝑠 , which is such that such that ℓ𝑠𝑖 [𝑘] =
𝑑𝑠 [𝑘] [𝑖] for all database keys 𝑘 . Each 𝑑𝑠 [𝑘] maps from state identifiers to symbolic guarded values.
To reduce the nondeterminism in the choice of which states we can read from, we use a sparse
representation of maps 𝑑𝑠 [𝑘], where state identifier id is only a key in 𝑑𝑠 [𝑘] if transaction trid
wrote to key 𝑘 . Partially-symbolic state maps 𝑑𝑠 have only state identifiers for committed states.

Example 5.1. Assume that the transfer transactions for the example in §2 are instead conditional

and only transfer money iff a condition 𝜃 holds, otherwise acting as no-ops. The database state
after transaction 1 is then represented by ⟨𝑑𝑠 , 𝜀⟩, which has the following entries for account 2:
𝑑𝑠 [accounts, 2] = {0 ↦→ {id ↦→ 2, balance ↦→ ⟨true, 300⟩}, 1 ↦→ {id ↦→ 2, balance ↦→ ⟨𝜃, 310⟩}}

5.4 Semantic Constraint Generation

We now present a method for generating a simpler encoding of the observational semantic correct-
ness constraint in the form of a partially-symbolic version of the VA-TDL semantics. It relies on a
partially-symbolic TDL semantics analogously to how the concrete VA-TDL semantics relies on
the TDL semantics. We present this partially-symbolic TDL semantics first.

5.4.1 Partially-Symbolic TDL Semantics. We assume that for our TDL, we can construct a partially-
symbolic semantics with steps of the form (stmts, 𝑠𝑠 · C) ↩→ (stmts

′, 𝑠𝑠 ′ · C′), where 𝑠𝑠 , 𝑠𝑠 ′ are
partially-symbolic database states and constraints. At the end of the execution of a sequence of
statements, the final constraint C′ must hold in order for the sequence of statements to have had
a semantically correct execution. This constraint C′ should be equisatisfiable to a BMC formula
capturing the behaviors of the statements.

We assume the partially-symbolic semantics is sound, precise, and meets the concrete execution
condition with respect to the concrete TDL semantics, where these notions are defined below:

Definition 5.1 (Soundness and Precision of Partially-Symbolic TDL Semantics). A partially-
symbolic TDL semantics is sound (resp. precise) for a concrete TDL semantics iff there exists a step
(stmts, 𝑠) ↩→∗ (stmts

′, 𝑠 ′) in the concrete semantics only if (resp. if) there is a corresponding step in
the partially-symbolic one (stmts, 𝑠𝑠 · true) ↩→∗ (stmts

′, 𝑠𝑠 ′ · C), where there exists interpretation
I such that I ⊢ C, and the replacement of all expressions in 𝑠𝑠 and 𝑠𝑠 ′ with their interpretations in
I respectively yields states 𝑠 and 𝑠 ′.

Definition 5.2 (Concrete Execution Condition). Let ℓ𝑠 , 𝑟𝑠 be partially-symbolic maps, and let
ℓ𝑠 = ℓ1 ∪ ℓ ss2 and 𝑟𝑠 = 𝑟1 ∪ 𝑟 ss2 where the pairs ℓ1, ℓ ss2 and 𝑟2, 𝑟 ss2 are of maps with disjoint domains,
ℓ1 and 𝑟1 have values that are all concrete, and ℓ ss2 and 𝑟 ss2 have values that are symbolic. If there
exists a function upd such that for all concrete maps ℓ2, 𝑟2 with the same domains as ℓ ss2 and 𝑟 ss2
respectively, (stmts, ⟨ℓ1∪ℓ2, 𝑟1∪𝑟2⟩) ↩→ (stmts

′, upd(ℓ1, 𝑟1)) is a step in the concrete TDL semantics,
then (stmts, ⟨ℓ𝑠 , 𝑟𝑠⟩ · C) ↩→ (stmts

′, upd(ℓ1, 𝑟1) · C) is a step in the partially-symbolic execution.

Soundness and precision requirements ensure that the partially-symbolic semantics captures
exactly the behaviors of the concrete semantics. The concrete execution condition ensures that the
partially-symbolic semantics performs concrete execution (and does not generate any constraints)
whenever the next semantic step depends only on concrete values in the partially-symbolic state.

5.4.2 Partially-Symbolic VA-TDL Semantics. Given a partially-symbolic TDL semantics, we can
construct a partially-symbolic VA-TDL semantics via the rule shown in Fig. 5. The rules have
premises that correspond to those in Fig. 4, but where operations have been lifted to use the
partially-symbolic representations or TDL as appropriate. We will explain premises (c1) and (c2)

in more detail as they involve encoding nondeterministic reads symbolically.
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Read
is
𝑠 = ReadMap (Dom(𝑑𝑠 )) (c1)

ℓ𝑠 = {𝑘 ↦→ readVal(𝑤𝑠 , 𝑑𝑠 , 𝑘, rm) | 𝑘 ∈ Dom(is𝑠 ) } (c2) (stmts, ⟨ℓ𝑠 , 𝑟𝑠 ⟩ · C) ↩→ (stmts
′, ⟨ℓ𝑠 , 𝑟𝑠 ′⟩ · C′) (c3)

𝑑𝑠 ⊢ (stmts, ⟨𝑤𝑠 , 𝑟𝑠 ⟩ · C) ⇝ (stmts
′, ⟨𝑤𝑠 , 𝑟𝑠

′⟩ · C′)

Read-Free
ℓ𝑠 = {𝑘 ↦→ dummy | 𝑘 ∈ Dom(𝑑𝑠 ) \ Dom(𝑤𝑠 ) } ∪ 𝑤𝑠 (c4)

(stmts, ⟨ℓ𝑠 , 𝑟𝑠 ⟩ · C) ↩→ (stmts
′, ⟨ℓ𝑠 ′, 𝜀𝑠 ⟩ · C′) (c5) 𝑤𝑠 ′ = {𝑘 ↦→ ℓ𝑠

′ [𝑘 ] | 𝑘 ∈ Dom(ℓ𝑠 ′) ∧ ℓ𝑠 ′ [𝑘 ] ≠ dummy} (c6)

𝑑𝑠 ⊢ (stmts, ⟨𝑤𝑠 , 𝑟𝑠 ⟩ · C) ⇝ (stmts
′, ⟨𝑤𝑠 ′, 𝜀𝑠 ⟩ · C′)

Fig. 5. Partially-symbolic VA-TDL semantics rules.

ReadMap(Dom(𝑑𝑠 )) maps from every key 𝑘 in Dom(𝑑𝑠 ) to a fresh symbolic identifier for the
state that the value for 𝑘 is read from. Instead of choosing concrete state identifiers 𝑖 indicating
which states to read from for each key 𝑘 , the Read rule chooses symbolic state identifiers instead
(c1). These effectively capture all possible nondeterministic choices of is, yielding its symbolic
version of is𝑠 .

We lift readVal (defined in §3.2) to the symbolic setting (c2) and let readVal(𝑤𝑠 , 𝑑𝑠 , 𝑘, is𝑠 ) be the
read of a key 𝑘 from 𝑑𝑠 , with the values read per key specified by the map is

𝑠 unless the key was
written by transaction trid, in which case that written value is read:

readVal(𝑤𝑠 , 𝑑𝑠 , 𝑘, is𝑠 ) ≡
{
ITE

(
true,𝑤𝑠 [𝑘], at(𝑑𝑠 [𝑘], is𝑠 [𝑘])

)
if 𝑘 ∈ Dom(𝑤)

at(𝑑𝑠 [𝑘], is𝑠 [𝑘]) otherwise

where

ITE(c, ⟨𝑔1, 𝑣1⟩, ⟨𝑔2, 𝑣2⟩) ≡


⟨smp(c ∧ 𝑔1 ∨ 𝑔2), 𝑣1⟩ 𝑣1 = 𝑣2

⟨𝑔2, 𝑣2⟩ 𝑣1 ≠ 𝑣2, smp(c ∧ 𝑔1) = false

⟨smp(c ∧ 𝑔1), 𝑣1⟩ 𝑣1 ≠ 𝑣2, 𝑔2 = false

⟨smp(𝑔1 ∨ 𝑔2), ite(smp(c ∧ 𝑔1), 𝑣1, 𝑣2)⟩ otherwise

and smp syntactically simplifies formulas by concretely evaluating any equalities or inequalities,
and then simplifies conjunctions and disjunctions based on any true or false conjuncts.
The at operator encodes the value in a map 𝑑 [𝑘] at potentially symbolic state identifier id𝑠 ,

producing a guarded value capturing all possible values components of 𝑑 [𝑘]. The guard constrains
id

𝑠 to identify a state in which the value exists, and the value component encodes the value of 𝑑 [𝑘]:
at(𝑑𝑠 [𝑘], id𝑠 ) ≡ ⟨min(Dom(𝑑𝑠 [𝑘])) ≤ id

𝑠 ∧ 𝑔, val⟩
where ⟨𝑔, val⟩ encodes 𝑑𝑠 [𝑘] for id𝑠 and is defined as expr(𝑑𝑠 [𝑘], id𝑠 ), where for 𝑣 = 𝑑𝑠 [𝑘],

expr(𝑣, id𝑠 ) ≡
{
𝑣 [id] if Dom(𝑣) = {id}
ITE

(
id

𝑠 ≥ 𝑖, 𝑣 [𝑖], expr(𝑣 [𝑖 ↦→⊥], id𝑠 )
)

𝑖 = max(Dom(𝑣))

Example 5.2. Continuing from Example 5.1, after running the partially-symbolic VA-TDL se-
mantics for transaction 2 in §2, the database state is then represented by ⟨𝑑𝑠 , 𝜀⟩ where we have
𝑑𝑠 [accounts, 2] [3] = {id ↦→ 2, balance ↦→ ⟨0 ≤ 𝑖𝑑𝑠 , 100 + ite(id𝑠 ≥ 1 ∧ 𝜃, 310, 300)⟩}.

Alg. 1 shows how can use the partially-symbolic VA-TDL semantics to generate semantic
constraint

∧𝑛
𝑖=0 𝐹𝑖 for a given sequence of transactions, their observations, and an encoding of

the initial states Init. At line 2, the initial constraint is 𝐹0 = Init. (There is no read result for the
initial state, so there is no need to generate a constraint for 𝑝 .) The initial symbolic system state
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Algorithm 1 Encoding semantic constraints
1: procedure EncodeSem({tr𝑖 }𝑛𝑖=1, obs, ≺, ℓ𝑠0 , Init)
2: 𝐹0,𝑤

𝑠
0, 𝑟

𝑠
0, 𝑑

𝑠
0 ← Init, ∅, 𝜀, {𝑘 ↦→ {0 ↦→ ℓ𝑠0 [𝑘]} | 𝑘 ∈ Dom(ℓ𝑠0 )}

3: for each tr𝑖 in order of ≺
4: if 𝑑𝑠𝑖−1 ⊢ (stmt(tr𝑖 ), ⟨∅, 𝜀⟩ · 𝐹𝑖−1) ⇝∗ (𝜖, ⟨𝑤𝑠

𝑖 , 𝑟
𝑠
𝑖 ⟩ · C𝑖 )

5: 𝐹𝑖 ← C𝑖 ∧ eq(r(obs(tr𝑖 )), 𝑟𝑠𝑖 )
6: 𝑑𝑠𝑖 ← 𝑑𝑠𝑖−1 but updated with writes in𝑤𝑖

7: else return false

8: return

∧𝑛
𝑖=0 𝐹𝑖

has empty read result 𝜀, and the initial symbolic state map contains initial symbolic system state
ℓ𝑠0 , which can be defined to correspond to an arbitrary system state in a set of such initial states
L0. Line 4 generates constraint 𝐹𝑖 for 𝑖 > 0 by applying the partially-symbolic VA-TDL semantics
incrementally to the statements of transaction tr𝑖 , the partially-symbolic database state generated
so far, and the previous constraint 𝐹𝑖−1. If we can run the partially-symbolic VA-TDL semantics to
completion, then we construct 𝐹𝑖 (line 5) as the conjunction of the constraint C𝑖 and the encoding
of 𝑝 for tr𝑖 . We also construct the next state map (line 6). On the other hand, if the semantics gets
stuck, there is no semantically correct behavior for the arguments to Alg. 1 (line 7).

6 Isolation Constraints

We now consider isolation constraints over traces and their symbolic encodings. To reason about
isolation guarantees, we need to know which database states were read by each transaction for each
key. We do not have this information a priori as the choice of value to read is nondeterministic and
depends on the semantics of the transactions’ statements; however, it is straightforward to collect
this information while executing the VA-TDL semantics. We accordingly instrument VA-TDL
semantics to collect this information in the form of read records 𝑚, which map from each key
in database state ℓ to sets of identifiers for all states in which the key had its value read for that
key. We also instrument our partially-symbolic VA-TDL semantics so that it collects symbolic read
records𝑚𝑠 , which map from keys to sets of symbolic state identifiers.
To encode isolation constraints, we first adapt Crooks et al.’s commit tests to be in terms of

concrete read records, at which point the symbolic encoding is straightforward. We overload the
notation 𝐶𝐼 and define these concrete isolation constraints C𝐼 (𝑒) as being equal to corresponding
constraints C𝐼

(
𝑒, (𝑚𝑖 )𝑖

)
over not only the execution but reads records (𝑚𝑖 )𝑖 collected from running

the instrumented VA-TDL semantics for the transactions in 𝑒 . We can then symbolically encode
these isolation constraints and conjoin them with the semantic correctness formula 𝜙 for the trace
to yield a formula that is satisfiable iff there is an observationally correct execution.

6.1 Instrumented VA-TDL Semantics

As the instrumentation of the semantics is straightforward, here we just define requirements on
the reads records returned by the instrumented semantics.
For a Read step in the VA-TDL semantics (Fig. 4) with conclusion 𝑑 ⊢ (stmts, ⟨𝑤, 𝑟 ⟩ · C) ⇝
(stmts

′, ⟨𝑤, 𝑟 ′⟩), a key 𝑘 is read if it is part of the read result, i.e., in Dom(𝑟 ′). If the map is is
generated as part of the Read step’s premises (c1), then the state identifier read for the key 𝑘 is id if
the transaction reads its own write on 𝑘 , or else it is is[𝑘].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 139. Publication date: April 2025.



139:16 Lauren Pick, Amanda Xu, Ankush Desai, Sanjit A. Seshia, and Aws Albarghouthi

Read Most Recent RMR(𝑖,𝑚):∀id ∈ ids(𝑚).id = 𝑖

Read One Snapshot ROS(𝑚): ∀id𝑖 , id𝑗 ∈ ids(𝑚).id𝑖 = id𝑗

Read One Value ROV(𝑚): 𝑘 ∈ Dom(𝑚) ⇒ ∀id𝑖 , id𝑗 ∈𝑚[𝑘] .id𝑖 = id𝑗

No Future Reads NFR(𝑖,𝑚): ∀id ∈ ids(𝑚), id ≤ 𝑖

NoWrite Conflict NWC((ℓ𝑖 )𝑖 , 𝑖,𝑚) : ∀𝑘 ∈ Dom(𝑚), id ∈𝑚[𝑘] . ℓ𝑖 [𝑘] ≠ ℓid [𝑘] ⇒ ℓ𝑖 [𝑘] = ℓ𝑖−1 [𝑘]

Fig. 6. Conditions for isolation constraints

Read Most Recent ΨRMR (𝑖,𝑚𝑠 ):
∧

id
𝑠 ∈ids(𝑚𝑠 )

id
𝑠 = 𝑖

Read One Snapshot ΨROS (𝑚𝑠 ):
∧

id
𝑠
𝑖 ,id

𝑠
𝑗 ∈ids(𝑚𝑠 )

id
𝑠
𝑖 = id

𝑠
𝑗

Read One Value ΨROV (𝑚𝑠 ):
∧

𝑘∈Dom(𝑚𝑠 )

∧
id

𝑠
𝑖 ,id

𝑠
𝑗 ∈𝑚 [𝑘 ]

id
𝑠
𝑖 = id

𝑠
𝑗

No Future Reads ΨNFR (𝑖,𝑚𝑠 ):
∧

id
𝑠 ∈ids(𝑚𝑠 )

id
𝑠 ≤ 𝑖

NoWrite Conflict ΨNWC (𝑑𝑠 ,𝑤𝑠 , 𝑖,𝑚𝑠 ), where src = at(𝑑𝑠 [𝑘], id𝑠 ):∧
𝑘∈Dom(𝑤𝑠 )

∧
id

𝑠 ∈𝑚𝑠 [𝑘 ]
¬eq(𝑤𝑠 [𝑘], src) ⇒ eq(src, 𝑑𝑠 [𝑘] [𝑖 − 1])

Fig. 7. Encodings of conditions for isolation constraints

Definition 6.1 (Read Records). For a complete run of the VA-TDL semantics, a read record 𝑚

is a map whose domain is exactly the set of keys that were read by some Read step in the run.
Furthermore, id ∈𝑚[𝑘] iff id was a state identifier read for key 𝑘 for some Read step in the run.

We analogously instrument the partially-symbolic VA-TDL semantics to yield a corresponding
partially-symbolic read records𝑚𝑠 .

6.2 Isolation Constraints on Execution Traces

Our isolation constraint definitions adapt the commit tests from Crooks et al. to work over pairs of
a trace and a sequence of corresponding concrete read records (𝑒, (𝑚𝑖 )𝑖 ) instead of whole states and
known read values. Constraints𝐶𝐼 for isolation levels are defined in terms of the conditions in Fig. 6,
where ids(𝑚) is the set of all the state identifiers kept track of in𝑚, i.e., ids(𝑚) = ⋃

Range(𝑚).
We use the phrase “𝑖 for which there is transaction in 𝑒” to refer to any 𝑖 such that there is a

transition in trace 𝑒 taken via transaction tr𝑖 . For convenience, we let start(tr𝑖 ) = start(obs(tr𝑖 ))
and end(tr𝑖 ) = end(obs(tr𝑖 )). For strict isolation levels (SS, SSI), we assume access to commit times
of transactions (end(tr𝑖 ) ≠⊥) and that ≺ is such that tr𝑖 ≺ tr𝑗 if end(𝑜𝑖 ) < end(𝑜 𝑗 ), since this is
necessary for the level’s time-related guarantees to be met. For SS, we also assume access to start
times (start(tr𝑖 ) ≠⊥) and that they always precede corresponding commit times end(tr𝑖 ).
Serializability𝐶S

(
𝑒, (𝑚𝑖 )𝑖

)
: for all 𝑖 for which there is a transition in 𝑒 , we need that RMR(𝑖−1,𝑚𝑖 ),

so that the values observed by each transaction tr𝑖 are consistent with those that would have been
observed in a sequential execution of transactions in the order that they occur in 𝑒 .
Strict Serializability 𝐶SS

(
𝑒, (𝑚𝑖 )𝑖

)
: for all 𝑖 for which there is a transaction in 𝑒 , we need that

RMR(𝑖 − 1,𝑚𝑖 ) and that transactions happen sequentially according to their start and end times, a
property which we will refer to as seq

(
(tr𝑖 )𝑛𝑖=1

)
.
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Snapshot Isolation 𝐶SI

(
𝑒, (𝑚𝑖 )𝑖

)
: for all 𝑖 for which there is a transaction in 𝑒 , we need that

ROS(𝑚𝑖 ), NFR(𝑖,𝑚𝑖 ), and NWC(𝑠𝑖 .ℓ, tr𝑖 ,𝑚𝑖 ). ROS ensures that all reads by a transaction tr𝑖 come
from the same snapshot, NFR prevents reads on states come after the commit of the transaction,
and NWC ensures that for any key written by transaction tr𝑖 , it has not been (observably) written
by any intervening transaction tr𝑗 that committed after the snapshot.
Strict Snapshot Isolation 𝐶SSI

(
𝑒, (𝑚𝑖 )𝑖

)
: for all 𝑖 for which there is a transaction in 𝑒 , we need

that RMR( 𝑗,𝑚𝑖 ) and NWC(𝑑𝑖 , 𝑖,𝑚𝑖 ) for tr𝑗 with the latest end time end(tr𝑗 ) before start(tr𝑖 ). RMR

guarantees all reads by transaction tr𝑖 come from the snapshot taken at the start of the transaction.
Read Committed 𝐶RC

(
𝑒, (𝑚𝑖 )𝑖

)
: for all 𝑖 for which there is a transaction in 𝑒 , we need NFR(𝑖,𝑚𝑖 ).

6.3 Symbolic Encoding of Isolation Constraints

It is straightforward to encode the isolation constraints above as formulas over the variables in
partially-symbolic read records𝑚𝑠 . Fig. 7 shows symbolic encodings of conditions in Fig. 6. Formula
𝜓𝐼

(
(𝑑𝑠𝑖 )𝑖 , (𝑤𝑠

𝑖 )𝑖 , (𝑚𝑠
𝑖 )𝑖

)
encoding a constraint 𝐶𝐼 is constructed by replacing each condition cond in

𝐶𝐼 ’s definition with its symbolic encoding Ψcond and conjoining the constraints as appropriate.

Theorem 6.1. For given T , obs, ≺, and ℓ𝑠0 , if 𝜙 is the formula returned by running Alg. 1 on
them and (𝑑𝑠𝑖 )𝑖 , (𝑤𝑠

𝑖 )𝑖 , and (𝑚𝑠
𝑖 )𝑖 are the database states, write maps, and read records produced

by running the partially-symbolic semantics as part of Alg. 1, then 𝜙 ∧𝜓𝐼

(
(𝑑𝑠𝑖 )𝑖 , (𝑤𝑠

𝑖 )𝑖 , (𝑚𝑠
𝑖 )𝑖

)
is

satisfiable iff there exists an observationally correct execution of T for isolation 𝐼 starting from
some system state in the set of system states represented by ℓ𝑠0 .

6.4 Isolation-Level-Aware Reads

So far, we have decoupled the generation of semantic constraints from the isolation level; however,
for isolation levels like strict serializability, serializability, and SSI, a transaction can only read from
either the latest version (for the serializability levels) or the version associated with its start time
(for SSI). For these levels, rather than allowing reads from all possible previous state identifiers,
we can modify the partially-symbolic VA-TDL semantics to permit only reads from states that are
allowed under the isolation level and thereby further simplify the constraints given to the SMT
solver. We modify the generation of the ℓ𝑠 in (c2) of the Read rule by using a version of the at
operation that captures only reads from the state the current transaction can read from: instead
of considering the entire domain of 𝑑𝑠 [𝑘], we consider a reduced domain consisting of only the
state identifier for right before the current transaction’s commit time (for strict serializable and
serializable), or the state identifier for the transaction’s start time (for SSI).

Example 6.1. Using isolation-level-aware reads, rather than the new database state entry shown
in Example 5.2, we would instead have 𝑑𝑠 [accounts, 2] [3] [balance] = 100 + ite(𝜃, 310, 300).
Furthermore, without conditional transfers (or equivalently, if 𝜃 = true) the guarded value would
instead be ⟨true, 410⟩, since we could concretely evaluate the addition in the TDL semantics.

7 Incremental Checking

Rather than directly checking the monolithic SMT formula constructed by conjoining semantic
and isolation constraints, we instead use an incremental approach, where we check prefixes of the
sequence of transactions resulting from ordering T by ≺. When an error is detected, this approach
provides the smallest prefix of the sequence that is not observationally correct, helping localize
errors. It also increases opportunities to apply heuristics like 𝐻4 (§7.1).
To perform incremental checking, we simply construct and issue an SMT query IC𝑖 , which is

defined as IC𝑖 ≡
∧𝑗

𝑗=0 𝐹 𝑗 ∧𝜓𝐼

(
(𝑑𝑠𝑗 )𝑖𝑗=0, (𝑤𝑠

𝑗 )𝑖𝑗=0, (𝑚𝑠
𝑗 )𝑖𝑗=0

)
at each step 𝑖 , where 𝐹𝑖 is as in Alg. 1, and

(𝑑𝑠𝑗 )𝑖𝑗=0, (𝑤𝑠
𝑗 )𝑖𝑗=0 (𝑚𝑠

𝑗 )𝑖𝑗=0 respectively give the partially-symbolic database states, write maps, and
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read records up to the 𝑖 th transaction. This formula captures the semantic and isolation constraints
of the trace up to the 𝑖 th transaction. To avoid redundant work from repeated conjuncts, we use
incremental SMT solving, adding only new conjuncts to the solver at each iteration. After performing
checking for the full trace, we can recover concrete system states by finding an interpretation I
for the formula extracting the interpretation for each state variable of each state 𝑠𝑖 .

Theorem 7.1. For a set of 𝑛 transactions T ordered by ≺, if ∧𝑛
𝑖 ICi is satisfiable with interpre-

tation I, then the sequence of states (𝑠𝑖 )𝑛𝑖=0 recovered from I always produces a correct trace
Tr((𝑠𝑖 )𝑛𝑖=0,T , ≺, obs). Furthermore, if there exists a correct trace, then

∧𝑛
𝑖 ICi is satisfiable.

7.1 Heuristics

We now consider strategies for improving performance. Note that all the heuristics either preserve
soundness or are applied in a way that preserves soundness.
Indexing (𝐻1): Inspired by traditional database indexing, for relational databases, we can use a
simple indexing scheme for equality predicates with a constant on one side to avoid full table scans
on evaluating WHERE clause predicates. For each table, we maintain a map from the constant to
the set of rows that satisfy the predicate and use this to avoid generating symbolic constraints
checking predicate satisfaction as well as expressions for rows that do not satisfy the predicate.
Sliding window (𝐻2): For weaker isolation levels, because of the large amount of nondeterminism
in possible read states, it can be more efficient to check stronger properties that restrict the states
from which reads can happen. If the stronger check is passed, then the weaker check for the
isolation level will also pass. This observation inspired a heuristic that uses a version of the at
operation that captures only reads from the most recent 𝑘 committed states for some parameter 𝑘 .
If a satisfiability check fails, we backtrack to consider reads from the previous 𝑘 committed states.
Concretization (𝐻3): To improve scalability, we concretize expressions in symbolic database state
𝑑𝑠𝑖 before using it to construct the next 𝐹𝑖 and IC𝑖 . Symbolic expression expr can be concretized
for SMT formula 𝐹 as follows: given I ⊢ 𝐹 , if 𝐹 ∧ ¬expr = I(expr) is unsatisfiable, replace expr
with I(expr). We use a recursive technique to concretize the maximum number of expressions:
we initially try to concretize all expressions in the set 𝐸 of symbolic state variable expressions. If
𝐸 is empty, we return. Otherwise, we issue query 𝐹 ∧ ¬∧

expr∈𝐸 expr = I(expr). If the query is
unsatisfiable, we concretize all expressions with their interpretations in I. Otherwise, we divide 𝐸
into two (arbitrary) halves and recursively try to concretize the halves.
Stronger isolation levels (𝐻4): As stronger isolation levels allow for less nondeterminism in read
states, they can be more efficient to check. To take advantage of this, when performing a step of
incremental checking for isolation level 𝐼 , we first use a suitable stronger isolation level than 𝐼 (if
one exists) to construct a stronger IC𝑖 . If the satisfiability check fails at any point, we backtrack to
the last 𝑖 for which IC𝑖 was constructed using a stronger isolation level than 𝐼 , construct a new IC𝑖

using level 𝐼 , and resume checking from that point. In the worst case, we have to backtrack for
each 𝑖 , but in practice, this helps scale checking for weak isolation levels like RC.

8 Evaluation and Case Study

We implemented a tool Troubadour, which uses the Z3 SMT solver [13] to check observational
correctness of logs of transactions in a fragment of SQL. It supports SELECTs, UPDATEs, INSERTs,
DELETEs, JOINs, predicates and WHERE clauses, table creation/deletion, stored procedure definitions
and calls, cursor creation and usage, WHILE- and FOR-loops, conditional statements, ORDER BY, and
aggregate functions SUM, MAX, and MIN. We used it to answer the following research questions:

(RQ1) To what extent does our improved encoding help?
(RQ2) How does our technique compare with others in terms of classes of bugs considered?
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Fig. 8. Effect of different encoding approaches on solving times. The Y-axis is log scaled.

(RQ3) How does our tool scale on a variety of workloads?
(RQ4) What is the impact of our heuristics?
We ran experiments for RQ1 and RQ2 on a Macbook Pro with an M1 processor and 16GB RAM

and ran experiments for RQ3 and RQ4 on a cluster of AMD EPYC™ 7763 64-Core CPUs.
Benchmarks. For RQ1, we considered a modified version of the example from §2.
For RQ2, we considered examples for real semantic bugs in DBMSs, the example in §2, and

synthetic randomly-generated correct logs. For the remainder of the evaluation, we used a set of
comprehensive benchmarks commonly used for DBMSs and studied in prior work [34, 40].
We considered the bank-server benchmark, which is similar to the example in §2, but in addi-

tion to balance-checks, it includes four transactions to manage bank account balances: Deposit,
Withdraw, Transfer, and WithdrawOverdraft. The benchmark is complex enough to manifest
interesting anomalies and has no pre-defined workload, so we adjusted it to explore the scalability
of Troubadour on different workloads. Next, we considered Twitter [1] and RUBiS [2], which
simulate real application workloads like that of a social media platform and an eBay-like bidding
system, respectively. These benchmarks contain more complicated SQL logic compared to the
bank-server benchmark and have pre-defined workloads used in prior work [34, 40]. The workload
for Twitter is NewTweet (20%), Follow (40%), Timeline (10%), ShowFollow (10%), and ShowTweets
(20%). The workload for RUBiS is RegisterUser (10%), RegisterItem (15%), StoreBuyNow (15%),
StoreComment (20%), and RandomBrowse (40%). Finally, we considered TPC-C [35], a standard on-
line transaction processing benchmark also considered in prior work [34, 40]. It specifies a workload
distribution of five transactions simulating a wholesale supplier: NewOrder (45%), Payment (43%),
Delivery (4%), OrderStatus (4%), and StockLevel (4%). These transactions are the most complex
and use constructs such as cursors, JOINs, and ORDER BY.

8.1 RQ1: Impact of the Improved Encoding

Fig. 8 shows the reduction in checking time using the improved encoding strategy when compared
to what results from completely removing arrays by introducing state variables per array element
(Baseline). We do not consider the fully-naive encoding from §5.1 here because Z3 reports unknown
for even just Init of the direct BMC encoding. Both strategies encode observational correctness
under the RC isolation level for traces of transactions that start from the same initial state of database
in the example in §2, perform 𝑘 − 1 transfer transactions of 10 from account 1 to 2, and then finally
read the balance of account 2. We compare the performance of the two encodings for 𝑘 = 10 and
for values of 𝑘 achieved by incremented it by 2 until either checking for the baseline encoding
exceeded 60 minutes once (for the buggy case) or exceeded 40 minutes for three consecutive 𝑘
values (for the correct case). For Fig. 8a, the final read-out value is observed to be 66, indicating
a semantic bug, and for Fig. 8b, the final read-out value is 400. Because proving observational
correctness for a set of transactions’ observations involves finding any satisfying assignment, there
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is more variability in solver performance for the correct example. Solver heuristics lead to faster
verification for certain values of 𝑘 .
Summary. Our improved encoding leads to a significant reduction in checking times for most example

sizes and results in less variability in the solving times. While for correct examples, the baseline

sometimes outperforms the improved encoding, the improved encoding consistently leads to solving

times under two seconds, even where solving times exceed 40 minutes for the baseline.

8.2 RQ2: Classes of Bugs Considered

Semantic. Troubadour can verify that a trace does not demonstrate any of the classes of bugs
detected by DBMS fuzzer SQLancer for the fragment of SQL that Troubadour supports as well
as detect the presence of such bugs. We used Troubadour to check correctness of queries by
generating a transaction for the query and a correct observation for the transaction. We then
ran Troubadour on the transaction and observation. It showed that all 11 of the considered
examples were observationally correct in under a second total. We also ran the tool on the query
and the original incorrect response observed by SQLancer, and Troubadour reported errors for
all the examples in under a second total as well, demonstrating its ability to detect semantic bugs.
We considered benchmarks based on MySQL queries 2, 3, 9, 15, 16, 18, and 19 and TiDB queries
1, 3, 10, and 13 generated by SQLancer1, which detected real bugs in MySQL and TiDB DBMS
implementations. Other queries used features (e.g., views) not currently supported by Troubadour.
Isolation and data anomalies. Troubadour can also be used to ensure the absence of observable
isolation level violations and detect anomalies as isolation checking tools can. Many tools are
specialized for finding anomalies for specific isolation levels. For example, Cobra supports only
anomalies for the serializable isolation level [34], and Viper and PolySI support only anomalies for
SI [21, 40]. Meanwhile, Troubadour and Elle [6] can detect subsets of anomalies that correspond
to different isolation levels, including those handled by more specialized checkers. Troubadour,
similarly to Elle, can detect when there has been an anomaly that violates isolation guarantees.
To demonstrate this, we generated logs of 2-4 transactions demonstrating common anomalies:

dirty update [6], duplicate write [6], dirty write [5], aborted read [5], garbage read [6], intermediate
read [5], and circular information flow [5] (permitted by none of the isolation levels we consider
here); phantom read [37], lost update [17], read skew [37], and internal inconsistency [6] (permitted
by RC); and write skew [37] (permitted by SI and RC). When verifying observational correctness
for a log containing an anomaly not allowed by the specified isolation level (e.g., a log containing a
dirty write for isolation level RC), Troubadour reported that the log demonstrated a bug in under
half a second for each log. When run on a log containing an anomaly allowed by the provided
isolation level (e.g., a log containing a write skew for isolation level SI), it verified observational
correctness in under half a second for each log.
Observational correctness. While Troubadour can detect semantics- or isolation-related bugs
in logs separately, its purpose is primarily to verify the absence of observable semantic or isolation
correctness errors with respect to logged transactions. Testing tools like SQLancer and TxCheck can
detect certain semantic bugs but clearly cannot perform verification of observational correctness [22,
31]. These tools further cannot catch bugs that require reasoning about isolation levels, such as the
bug for the example in §2.

Techniques that reason only about isolation levels similarly cannot show the absence of semantic
bugs and may also miss errors because they lack information about which transactions write which
values. Tools like Elle, Cobra, Viper, and PolySI can only be applied in settings where transactions’
reads and writes are all known, since they construct dependency graphs from reads. They would
1Found here: https://www.manuelrigger.at/dbms-bugs/

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 139. Publication date: April 2025.

https://www.manuelrigger.at/dbms-bugs/


Checking Observational Correctness of Database Systems 139:21

not, for example, be applicable for reasoning about the transactions in Fig. 1 with only the given
observations, since they do not record the read and written values of transactions. Furthermore,
even if such information were available from instrumentation, the tools do not check the correctness
of such information. If an incorrect implementation or instrumentation of UPDATE statements led
the only observed write to Transaction 3 to be to account 1’s balance, then isolation checking tools
would not detect any errors as having occurred within the first three transactions in Fig. 1.

Even when in cases where all transactions’ reads and write are known, isolation checkers, while
faster than Troubadour (which always checks semantic constraints and can detect all bugs), may
not be as useful for checking arbitrary logs for correctness because of their incompleteness as
bug-finders. To investigate, we compared Troubadour against Elle. on logs of key-value store
transactions. We generated 100 correct synthetic logs of 50 transactions for isolation level RC.
Each transaction is either a read of a single random value or a write of a single random value to a
random key. There were 10 possible keys and 100 possible values. For Troubadour, we modeled
the key-value store using a relational database table.

As expected, Elle is faster, taking an average of 2.9 seconds per log where Troubadour takes an
average of 9.3 seconds. On the other hand, Elle reported only 47 logs correct, reporting “unknown”
for the rest. Like other checkers that construct dependency graphs, Elle’s anomaly detection is
complete only when written values are unique, which is not the case for arbitrary logs. Troubadour
was able to prove all 100 logs correct as it does not require any up-front inference of dependencies.
Summary. Our approach can detect the same semantic and isolation bugs as prior work as well as

show that there is no observable violation of these errors in a log of transactions. Furthermore, it can

detect and show the absence of observable bugs involving both semantic and isolation-level guarantees.

8.3 RQ3: Scaling Across Workloads
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Fig. 9. The effect of varying bank-server workloads on performance. Y-axis labels in scientific notation.

Experimental setup. We consider workloads that vary in the level of transaction concurrency. We
expect more concurrency will lead to longer checking times, as the SMT solver must explore a larger
search space. To explore this question, we first conducted a controlled study using three different
configurations of the bank-server benchmark with 1000 accounts. The default configuration has
100% rows accessed, 0% blind writes, and 20% read-only transactions. Then we ran our tool on
the Twitter, RUBiS, and TPC-C benchmarks to explore benchmarks that have diverse pre-defined
workloads and SQL logic. We configured Twitter with 1000 users, RUBiS with 1000 users and 4000
items, and TPC-C with 1 warehouse, 2 districts, 3 customers per district, and 1 item. We generated
logs of transactions, responses, and commit times using a local instance of PostgreSQL 14 with
two concurrent users executing 50,000 random transactions each. PostgreSQL exposes commit
timestamps via the pg_xact_commit_timestamp() system function. We ordered transactions by
commit times, breaking ties arbitrarily. The set and order of transactions for each user was the
same across the different PostgreSQL isolation levels (Serializable, SI, RC).
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By default, Troubadour has all heuristics enabled and checks each log against the isolation
level used to generate it. Each benchmark was allotted 16GB of Java heap space and run with a
5-minute timeout. We measured the number of transactions checked within the timeout under
varying workloads.

Rows accessed. The first configuration varies the percentage of rows in the table that users are
allowed to access in their transactions. As this percentage increases, the number of transactions
per key decreases, resulting in less nondeterminism in the values for a particular row. We thus
expect that each incremental check should be faster at higher percentages and that the checker
should be able to process more transactions. Fig. 9a shows that this is the case: we observe a
significant increase after 0.2% of the rows accessed, where performance remains consistently better
than at 0.2% thereafter, with variation in performance resulting from the variation in solving time
overheads from heuristic 𝐻3.

Blindwrite. A blind write is a write that is performed without being inferrable from the transaction
read result. Non-blind writes can resolve some of the nondeterminism in the symbolic state and
help the checker concretize but may also slow checking down if there are more read results to
check. Fig. 9b shows that the latter is the case for Serializable and SI, where the cost of checking
additional read results outweighs the benefit from concretization, but for RC, concretization helps
enough that performance is largely unaffected.

Read only. The final configuration varies the percentage of read-only transactions. These transac-
tions only read the balance of an account. We expect these to be easier to check as this percentage
increases because fewer updates lead to fewer possible values that can be read. Indeed, Fig. 9c shows
that this is the case: Troubadour can check exponentially more transactions as the percentage of
read-only transactions increases linearly. When all transactions are read-only, Troubadour can
check on the order of 104 transactions within the timeout for all isolation levels. This scalability is
promising given what is achieved by isolation-only checkers. For example, the Viper checker for
SI was shown to check ten thousand transactions in roughly 7.3 minutes [40], where 50% of the
transactions are read-only. With 50% read-only transactions, Troubadour can check 15% more
transactions in five minutes. We note that this is not an apples-to-apples comparison for several
reasons, including that (1) our tool was run on more powerful hardware than Viper, and (2) Viper,
like other isolation checkers, does not handle (and consequently was not evaluated on) conditional
writes, which are present in our workloads and lead to growing read nondeterminism.

Benchmarks with pre-defined workloads. We considered three other standard benchmarks
that, unlike bank-server, have pre-defined workloads used in prior work [34, 40]. These benchmarks
use a richer subset of SQL and have a high amount of read nondeterminism, increasing reasoning
complexity and impacting Troubadour’s runtime. The number of rows returned by transactions
in these benchmarks is also significantly higher, increasing the time required to verify condition
S2. For example, bank-server transactions return at most two rows while the RandomBrowse
transaction, which makes up 40% of the RUBiS workload, returns twenty. Table 1 shows the number
of transactions Troubadour checked within five minutes for each benchmark and isolation level.
We observe the same expected performance trend across isolation levels as for bank-server in Fig. 9.

Summary. Troubadour can check observational correctness for thousands of transactions within a

5-minute timeout across different workloads for the bank-server benchmark. Read nondeterminism is

the greatest factor in performance. When run on more complex benchmarks, Troubadour can still

check hundreds of transactions within the timeout.
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Table 1. Number of transactions Troubadour can check within 5 minutes for more complex benchmarks.

Benchmark Serializable SI RC

Twitter [1] 2860 transactions 2810 transactions 496 transactions
RUBiS [2] 451 transactions 397 transactions 311 transactions
TPCC [35] 445 transactions 394 transcations 121 transactions
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(a) 𝐻1: Indexing
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(b) 𝐻2: Window = 4
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(c) 𝐻3: Concretization
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Fig. 10. The effect of incrementally adding heuristics on performance. Y-axis labels in scientific notation.

8.4 RQ4: Impact of Heuristics

Experimental setup. We progressively add each heuristic and observe the effect for varying
percentages of rows accessed. Otherwise, the setup is as for the bank-server part of RQ3. Each plot
in Fig. 10 shows the results after adding the heuristic with a solid line and results with only the
prior heuristics with a dashed line. Enabling 𝐻𝑖 is beneficial for an isolation level if its solid line is
above its dashed line. 𝐻2 and 𝐻4 do not apply to Serializable, so both lines overlap.
As shown in Fig. 10, almost all heuristics benefit performance for all isolation levels where

applicable. One exception is that 𝐻3 helps only for low percentages of rows accessed and can be
detrimental (especially for serializable) otherwise because of overheads. This is consistent with
RQ3; with more rows accessed and stronger isolation, there is less nondeterminism that 𝐻3 could
help resolve. Another exception is that 𝐻4 sometimes does not help for RC because the logs fail
to be strict RC relatively early on, and Troubadour proceeds to check RC using the provided
window. For a remote database (recall that our logs were generated using a local database with
extremely short latency), 𝐻4 should be more consistently useful for RC; transactions would be
subjected to additional delays such as network transit time, making it more likely they would
satisfy stronger levels enforcing real-time dependencies. Indeed, if we add a sufficiently long delay
between queries in the local setting, the logs all satisfy the strict version of the isolation level. These
results demonstrate that it is best to enable all heuristics for workloads where there is a very high
amount of nondeterminism, and that otherwise, it is best to enable all heuristics but 𝐻3.
Summary. All heuristics greatly improve performance and interact well with one another when there

is a high amount of nondeterminism. For example, turning on all heuristics leads Troubadour to

check 18x more transactions on average for SI.

8.5 Industrial Case Study

We applied Troubadour to logs generated using an unreleased (non-production) database that
offers SSI, built by our industrial collaborator. As our approach works for black-box DBMSs, no
modifications were required to apply Troubadour to these logs. Troubadour will eventually be
run continuously in a canary as a step in the CI/CD pipeline to monitor for correctness violations.
Semantic correctness. Troubadour was able to catch semantic correctness violations in the
query processor. The first violation was caused by an indexing logic bug: when a table was created
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and inserted into in the same transaction, SELECT...WHERE... statements in subsequent trans-
actions would return no results when at least one row satisfied the WHERE predicate. However,
SELECT statements with no WHERE gave expected results. The second violation manifested in the
form of multiple rows returned when selecting based on a primary key predicate. We also used
Troubadour to check that known bugs in the query processor that had already been fixed.
Isolation correctness. We generated and checked 24 hours worth of logs for the bank-server
and TPC-C benchmarks. Logs were generated with two concurrent users, and each had their own
query processor. Bank-server logs had 1000 accounts, 100% rows accessed, 0% blind writes, and 10%
reads. We configured TPC-C with 1 warehouse, 2 districts, 3 customers per district, and 1 item. The
setup was as in RQ3 but with 𝐻3 disabled. Troubadour demonstrated observational correctness
for a total of 1,096,548 transactions for the bank-server benchmark in 1.76 hours. Because TPC-C is
a more complex benchmark, checking observational correctness for a total of 60,022 transactions
took 89.2 hours. No semantic correctness nor isolation level violations were found.
Summary. Troubadour was applied directly to 24 hours of logs for bank-server and TPC-C bench-

marks for a database under development in industry. It found new semantic bugs in and verified

observational correctness of the logs.

9 Related Work

Below we describe related work by category. Additional related work includes Litmus [38], which
constructs a verified DBMS by modifying interactions with a (potentially black-box) backend DBMS.
Automated consistency verification. Different isolation levels result in different consistency
levels being provided by the DBMS. Consistency levels describe the visibility of and constraints on
the order of operations performed in a concurrent or distributed system, and there has been much
work automating verification of consistency levels such as linearizability [26, 41], serializability [32],
sequential consistency [30], and causal consistency [9, 39]. As with isolation levels, this requires
reasoning about nondeterministic reads for weaker levels like sequential and causal consistency.

Many of these verification techniques do not only verify observational correctness but check that
all executions of concurrent operations provide the specified consistency guarantees, especially for
stronger consistency levels like linearizability [26]. For weaker consistency levels, this verification
is difficult – it has been shown to be undecidable for causal consistency [9] – there are thus also
techniques that consider verifying consistency levels of only single executions at a time [4, 9, 39].

Our setting is distinct from all these techniques in two main ways: (1) our technique is parame-
terizable by isolation level, where many of the levels we can check result in weaker consistency
guarantees than considered by automated verifiers for consistency levels; and (2) we operate in a
black-box setting without access to the state of the system, meaning that we must reason about
semantics to infer whether there exists a sequence of states such that an execution is correct.
Testing. The testing approaches for DBMSs that we discuss here generate test cases that expose
bugs in the DBMS implementation, and do not test arbitrary transactions and client-side transaction
logs for correctness. They therefore solve a much different problem than DBMS correctness auditing.

There has been much work on DBMS fuzzing for SQL using a variety of techniques [3, 15, 31, 42],
such as ternary logic partitioning and mutation-based fuzzing. These tools focus exclusively on
semantic correctness of intra-transactional operations as they do not reason about isolation levels.
ADUSA [23, 24] uses constraint solving in Alloy to systematically test DBMSs. The TxCheck fuzzer
employs some limited reasoning about isolation levels [22]. The MonkeyDB work not only tests
for semantic bugs but also for isolation bugs in DBMSs [8]. It proposes operational semantics
(based on previous work [7]) and handles a limited subset of SQL by compiling to key-value store
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operations [8]. The semantics is used to test DBMS correctness with respect to a set of transactions
for which all read values are observable (i.e., there is no read nondeterminism).
Checking isolation levels. Most work on checking isolation guarantees solves the following
problem: given an isolation level 𝐼 and set of transactions T with known reads and writes, does there

exist an execution of T that meets constraints for 𝐼? This problem is similar to the problem of proving
observational correctness with respect to a log, but importantly includes no reasoning about the
semantics of the transactions. The assumption that all read and written values are observable either
limits the kinds of transactions that can be considered (e.g., the Deposit and Transfer transactions
from Fig. 2 could not be used as-is), requires a non-black-box DBMS, or leads to bugs being missed.
While these values may be gotten by instrumenting transactions [22], instrumentation implicitly
relies on the semantic correctness of the DBMS and may not be possible for certain DBMSs [16].
Elle deduces dependencies between transactions based on read and written values, and then

reasons possible transaction dependency graphs according to Adya’s formalism [5, 6]. Related
techniques do specialized checking of certain isolation levels [21, 27, 34, 40], such as serializability
and SI. Some of these further make the assumption that each value in the database is unique [21, 34].
Several of these techniques rely on checking for graph properties, where this checking is encoded
as a SAT or SMT problem. While we also reduce DBMS correctness auditing to SMT solving, the
queries we pose are more complex as we also require the solver to reason about the semantics
of transactions. Leopard is a much different approach that exploits implementation details of
commercial DBMSs to check they enforce isolation levels correctly [25].
Database query and program verification. Work on verification of database query equivalence
is also concerned with the semantics of database queries [10, 14, 20]; however, it does not consider
transactional settings nor SQL statements that modify the underlying database.Work on equivalence
of database-backed programs does consider transactions that may modify the database [36], but it
does not consider that the underlying DBMS may provide anything but full isolation of transactions.
Automated verification of concurrent programs. Automated verification of concurrent pro-
gramsmakes a similar distinction between semantics and consistency levels that we do for semantics
and isolation levels [18, 19, 33]: semantics are encoded into BMC(-like) formulas and separate con-
straints are generated to constrain executions to conform to the consistency level. These approaches
also aim to generate fewer SMT constraints and perform reasoning during solving to reduce the
number of consistency constraints generated. This idea is similar in spirit to our on-demand adding
of constraints to reduce the complexity of the SMT problem; however, these approaches focus on
consistency constraints and rely on new theory solvers to perform this reduction. In contrast, we
do not rely on new theory solvers and aim to reduce both semantic and isolation constraints gener-
ated by evaluating the VA-TDL semantics concretely where possible, maintaining database states’
representations outside the solver, and passing only relevant constraints to the solver on-demand.
It is also worth noting that these techniques are not compatible with the state-based formalism of
isolation we consider here, which is not formulated in terms of relations on read and write events.

10 Conclusion

We proposed a novel formal definition of observational correctness for black-box DBMSs and an
SMT-based checking approach for it that is parameterizable over different transaction descrip-
tion languages and isolation levels. We demonstrated experimentally that our implementation
Troubadour can verify full observational correctness (including both semantic and isolation
constraints), and that it can scale to practical log sizes. Future work includes developing fur-
ther heuristics or optimizations for improving scalability for non-serializable isolation levels and
extensions to handle more permissive isolation levels that allow for reading of uncommitted states.
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