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Undecidable in general.
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Verification subproblems can involve discovery of inductive invariants
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For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Want to prove safety property that no Bad states are reachable from /nit states
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Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs € [nir. I(s)

Consecution: Vs, s' &€ S.I(s) A T(s,s") = I(s)

Can use invariants to help prove safety properties: Vs € S.I(s) = " Bad(s)
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Invariant Discovery

Consider how to discover invariants

invariant discoverer
verification subproblems
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Automatically finding and leveraging invariants hard in general
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Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability

 relevance
program dégb invariant discoverer

verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

property ¢

ind. inv. [, [,

Will see specifics later on...




Contributions

How to exploit structure of both programs and properties
to infer and leverage invariants that improve scalability and performance
in SMT-based automated verification.
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Classes of Verification Problems

Will talk about each of these in turn

|. k-safety Verification

ll. Interprocedural Program
Verification

1. Information-Flow Verification
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Classes of Verification Problems

Will talk about each of these in turn

|. k-safety Verification

ll. Interprocedural Program
Verification

I1l. Information-Flow Verification

Will talk about the third most detail
(Extra slides on the second)
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Classes of Verification Problems

Brief note about formalisms used to model each class of problems

|. k-safety Verification
Cartesian Hoare Logic

ll. Interprocedural Program

Verification
Constrained Horn Clauses Constrained Horn Clauses

1. Information-Flow Verification

» No (specialized) heap modeling
« No higher-order functions
. Static call graph

13 Cartesian Hoare Logic, Sousa and Dillig, PLDI"16



|. k-safety Verification

intraprocedural ity )
programs [ jp— ]
information
flow
Single-procedure programs Properties over k copies of

(may contain loops) the same program
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Relate the k program copies at intermediate points

pre
X1 X Xk

LONEIPON ON

y1 V2 Vk
. post

How to leverage and how (where) to infer them for scalable verification?
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Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties lead to redundant subtasks, so prune them

PO A,

Property symmetry 1€%2

1€>2

same subtask
verlflcatlon subtasks

How to infer relational properties?
Use synchrony technigue for loops for fewer and simpler invariants

§t) §t) §t) @D L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony

s and Symmetry in Relational Verification, CAV'18
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synchrony symmetry

L &
a 4

Synchrony and symmetry help infer fewer, simpler relational invariants,

leading to the elimination of redundant verification subtasks.
Solved 11/14 Java benchmarks in ~4 mins each, timed out in 1 hr otherwise

Achieved up to ~21 times speedup on the remaining 117
(Largest benchmark ~200 LOC)

A O .
checker

- C P
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. Interprocedural Program Verification

interprocedural
programs

safety

properties

Multiple-procedure programs General safety properties
(may contain recursion) (hoisted to entry procedure)
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Interprocedural Programs

safety
asserts property

Example call graph

interprocedural
programs

Have call graphs

Will derive and use over- and under-approximate procedure summaries
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Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable least scalable

summary summary
inference i inference

most relevant

" "N

least relevant

" "N

~-‘ m - ~-‘

property information abstracted away o0 no scalability benefits from abstraction
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Larger bound, more relevant/less scalable Unbounded Procedure Summaries from
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Multiple-procedure programs Information-flow security properties
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Product Programs

safety

/k-safety.

Can turn into by constructing a product program
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v — — «— v

Secure information flow by self-composition, Barthe et al., CSFW’'04
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Declassification

Non-interference alone can be too restrictive
Can declassify to allow some leakage

Password recognizer

>

—|ow-security: correct?
declassify(input = password)

high-security: input

Declassification can be captured in the environment
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Structural info about programs and properties can help with: « scalability
e relevance

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

Information-flow Templates

P

property ¢

£

46



Contributions

How to exploit structure of both programs and properties
to infer and leverage invariants that improve scalability and performance
in SMT-based automated verification.
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Future Work

Symmetry-breaking for

e L. Constrained Horn Clauses
|. k-safety Verification

Cartesian Hoare Logic [2]

ll. Interprocedural Program

Verification
Constrained Horn Clauses Constrained Horn Clauses

I1l. Information-Flow Verification

Handle heaps: Constrained Horn Clauses + heaps [1]

[1] Towards an SMT-Lib Theory of Heap, Esen and Rummer, 1JCAR'20
48 [2] Cartesian Hoare Logic, Sousa and Dillig, PLDI"16
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Synchrony for Loops

How to make it easy to infer relational loop invariants?

e~ o

I |terat|ons j |terat|ons

Use one simple relational loop invariant per set of “lockstep” loops.

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]
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Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:

I and (O:x orO:x or()fx or@X) One loop terminated

‘ implies
O:x and O:x and Qx and Qx All loops have terminated

Ask as SMT query, and use model to partition

Different number of iterations

o O = OO O

52 [PICI( et al., 2018]



Summary Inference

environment
summary

/ @ inference?

target procedure o TR

4 A )

53



Summary Inference

environment

summary
/ @ inference?

target procedure

SMT Solver

53



Summary Inference

environment

7

target procedure o TR

4 A )

summary
inference?

SMT Solver

: even | over-approximate summary

-, 4
N

53



Summary Inference

environment

7

summary

\ .
{ aven s Over-approximate summary
inference? /

target procedure  ,-Y-, SMT Solver
+ odd .
N * aven | under-approximate summary

53



Summary Inference

example: y « 2x + 2

environment

7

target procedure o TR

summary
inference?

SMT Solver

~--v : even

N\ .
_even ! OVer-approximate summary

h under-approximate summary

1
]

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

7

target procedure o TR

4 A )

summary
inference?

SMT Solver
h under-approximate summary

~.ov ' even
1 q

N\ .
_even ! OVer-approximate summary

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

7

target procedure LN

24 s

summary
inference?

SMT Solver
h under-approximate summary

Te-t ' even
| § ’

A\ :
even). over-approximate summary
S x>0=>y >x

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ |nference. N ” X > O = y’ > X
implied by actual semantics
target procedure RN SMT Solver
+ odd .
N * aven | under-approximate summary

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ |nference. N ” X > O = y’ > X
implied by actual semantics
target procedure RN SMT Solver
+ odd .
N * aven | under-approximate summary

A x=0Ay =2

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ |nference. N ” X > O = y’ > X
implied by actual semantics
target procedure  ,-%-( SMT Solver
+ odd .
N * aven | under-approximate summary

A S x:O/\y/zz
implies actual semantics

53



Summary Inference

example: y « 2x + 2
y =2x4+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ inference? .~ s x>0=>y9>x
implied by actual semantics
target procedure  ,-%-( SMT Solver
+ odd .
N * aven | under-approximate summary

\~-—" X:O/\y/zz
implies actual semantics

Will make four SMT queries, over- and under-approximating both environment and target procedure
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= Vw,z.even(w) =z= (z < w mod 2 = 0)

“Implies even’s output is always even”

SMT Solver
x EC lemma valid, so learn it V

learn: “odd’s output always being odd implies that even'’s output is always even”
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