
Scaling Automatic Modular 
Verification

Lauren Pick



Automated Software Verification

2

verification problem



Automated Software Verification

2

program

verification problem



Automated Software Verification

2

program

property φ

verification problem



Automated Software Verification

2

program

property φ

verification problem

checker



Automated Software Verification

2

program

property φ

verification problem

checker

Is there an execution of program 

that violates property? 



Automated Software Verification

2

program

property φ

verification problem

checker

SMT Solver

Is there an execution of program 

that violates property? 



Automated Software Verification

2

program

property φ

verification problem

checker

SMT Solver

Is there an execution of program 

that violates property? 



Automated Software Verification

2

program

property φ

verification problem

checker

SMT Solver

Is there an execution of program 

that violates property? 



Automated Software Verification

2

program

property φ

verification problem

?
checker

SMT Solver

Is there an execution of program 

that violates property? 



Automated Software Verification

2

program
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verification problem

?
checker

Undecidable in general.

SMT Solver

Is there an execution of program 

that violates property? 
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program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

…

Verification subproblems can involve discovery of inductive invariants



Verification of Transition Systems

5

For a transition system :(S, T, Init)



States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)



States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S



States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)



States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad



States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Want to prove safety property that no  states are reachable from   statesBad Init

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Formula  is an inductive invariant for the system if the following hold:I



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula  is an inductive invariant for the system if the following hold:I



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula  is an inductive invariant for the system if the following hold:I

I



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula  is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′ ) ⇒ I(s′ )

I



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula  is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′ ) ⇒ I(s′ )

I

I



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula  is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′ ) ⇒ I(s′ )

I

I



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula  is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′ ) ⇒ I(s′ )

I

I



States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula  is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′ ) ⇒ I(s′ )

I

I

Can use invariants to help prove safety properties:  ∀s ∈ S . I(s) ⇒ ¬Bad(s)
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Will see specifics later on…



Contributions

How to exploit structure of both programs and properties 
to infer and leverage invariants that improve scalability and performance 

 in SMT-based automated verification.
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properties
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 II. Interprocedural Program 
Verification III. Information-Flow Verification

I. k-safety Verification

Will talk about each of these in turn

Will talk about the third most detail 
(Extra slides on the second)

 II. Interprocedural Program 
Verification III. Information-Flow Verification
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 II. Interprocedural Program 
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program 
Verification III. Information-Flow Verification

Brief note about formalisms used to model each class of problems

• No (specialized) heap modeling 
• No higher-order functions 
• Static call graph

Cartesian Hoare Logic

Constrained Horn Clauses Constrained Horn Clauses

Cartesian Hoare Logic, Sousa and Dillig, PLDI’16



I. k-safety Verification
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k-safety

information 
flow

Single-procedure programs 
(may contain loops)

Properties over k copies of 
the same program

intraprocedural 
programs
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Relate the k program copies at intermediate points

15

How to leverage and how (where) to infer them for scalable verification?

x1 x2
pre

xk

y1 y2
post

yk

……
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Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony  
and Symmetry in Relational Verification, CAV'18

verification subtasks

Use synchrony technique for loops for fewer and simpler invariants
How to infer relational properties?

Property symmetry 1 2
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Synchrony and symmetry help infer fewer, simpler relational invariants, 
leading to the elimination of redundant verification subtasks. 

Solved 11/14 Java benchmarks in ~4 mins each, timed out in 1 hr otherwise 
Achieved up to ~21 times speedup on the remaining 117 

(Largest benchmark ~200 LOC)
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19

Multiple-procedure programs 
(may contain recursion)

General safety properties 
(hoisted to entry procedure)
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Example call graph

main

f even

g h odd
Have call graphs

recursive

interprocedural 
programs

e.g., even( f(x)) mod 2 ≡ 0

Will derive and use over- and under-approximate procedure summaries

safety 
propertyasserts
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21

main

f even

g h odd

Infer and use procedure summaries (invariants)

even

odd

environment

summary 
inference

even

f

g h

environment

f
summary 
inference

main

f even

checker

to handle mutual recursion and scale verification
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Fig. 7: Left: Percentage of benchmarks Clover solves with di↵erent bounds on di↵er-
ent benchmark categories; Center, Right: Timing results on a representative bench-
mark from CHC-Comp and Mutual Recursion, respectively.

the Even-Odd benchmarks, which Clover (with EC lemmas) can solve at any
bound value greater than 2. Other tools are unable to solve even half of the
Mutual Recursion benchmarks, reinforcing that Clover is a useful addition to
existing tools that enables handling of mutual recursion as a first class concern.

Usefulness of EC lemmas. Running Clover with and without EC lemmas
using bound k = 10 revealed their usefulness for many of the benchmarks. In
particular, the columns for bound 10 with and without EC lemmas in Table 2
show that EC lemmas are needed to allow Clover to solve several CHC-Comp
benchmarks and all the Mutual Recursion benchmarks except the Hofstadter
ones. These results indicate that Clover’s ability to outperform other tools on
the these benchmarks relies on EC lemmas.

Comparison of Di↵erent Bounds. Fig. 7 (left) shows the number of bench-
marks successfully solved by Clover in each set as the bound value is varied.
Running Clover with too small a bound impedes its ability to prove the prop-
erty or find a counterexample, since the environment is unable to capture su�-
cient information.On the other hand, running Clover with too large a bound
a↵ects the runtime negatively. This e↵ect can be observed in Fig. 7 center and
right, which show how the runtime varies with the bound for a representative
benchmark from the CHC-Comp and Mutual Recursion sets, respectively. Note
that at a bound k < 2, Clover does not solve the given CHC-Comp benchmark,
and at k < 5, Clover does not solve the given Mutual Recursion benchmark.
These results confirm the expected trade-o↵ between scalability and environ-
ment relevance. The appropriate trade-o↵ – i.e., the best bound parameter to
use – depends on the type of program and property. As seen in Fig. 7 (left), the
bound values that lead to the most benchmarks being solved di↵er per bench-
mark set. Rather than having a fixed bound, or no bound at all, the ability to
choose the bound parameter in Clover allows the best trade-o↵ for a particular
set of programs. If the best bound is not known a priori, bound parameters of
increasing size can be determined empirically on representative programs.

We also report data on how the number and solving time for each type of
SMT query varies with the bound k, averaged over benchmarks in each set.
Fig. 8 shows the statistics on the average number of queries of each type (top),
on the average time taken to solve the query (bottom). These data are from all
runs for which Clover is successful and gives an answer of safe or unsafe.
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Contributions

How to exploit structure of both programs and properties 
to infer and leverage invariants that improve scalability and performance 

 in SMT-based automated verification.
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Cartesian Hoare Logic [2]

Constrained Horn Clauses Constrained Horn Clauses

[2] Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Symmetry-breaking for 
Constrained Horn Clauses

Handle heaps: Constrained Horn Clauses + heaps [1] 

[1] Towards an SMT-Lib Theory of Heap, Esen and Rümmer, IJCAR’20
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How to make it easy to infer relational loop invariants?

51

i iterations j iterations

Use one simple relational loop invariant per set of “lockstep” loops.

invi

invj

[Barthe et al., 2011] 
[Sousa and Dillig, 2016]
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52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

I and or or or( ) One loop terminated

and and and All loops have terminated

implies

Ask as SMT query, and use model to partition

Different number of iterations

[Pick et al., 2018]
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under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

x > 0 ⇒ y′ > x

x = 0 ∧ y′ = 2

SMT Solver

even

target procedure

y′ = 2x + 2

implied by actual semantics

implies actual semantics

Will make four SMT queries, over- and under-approximating both environment and target procedure
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Possible EC Lemma

SMT Solver

¬

EC lemma valid, so learn it

∀x, y . 𝚘𝚍𝚍(x) = y ⇒ (y ⇔ (1 + x) mod 2 ≡ 0)

“ ’s output is always odd”𝚘𝚍𝚍

learn: “ ’s output always being odd implies that ’s output is always even”𝚘𝚍𝚍 𝚎𝚟𝚎𝚗


