
Scaling Automatic Modular
Verification

Lauren Pick

Automated Software Verification

2

verification problem

Automated Software Verification

2

program

verification problem

Automated Software Verification

2

program

property φ

verification problem

Automated Software Verification

2

program

property φ

verification problem

checker

Automated Software Verification

2

program

property φ

verification problem

checker

Is there an execution of program

that violates property?

Automated Software Verification

2

program

property φ

verification problem

checker

SMT Solver

Is there an execution of program

that violates property?

Automated Software Verification

2

program

property φ

verification problem

checker

SMT Solver

Is there an execution of program

that violates property?

Automated Software Verification

2

program

property φ

verification problem

checker

SMT Solver

Is there an execution of program

that violates property?

Automated Software Verification

2

program

property φ

verification problem

?
checker

SMT Solver

Is there an execution of program

that violates property?

Automated Software Verification

2

program

property φ

verification problem

?
checker

Undecidable in general.

SMT Solver

Is there an execution of program

that violates property?

Satisfiability Modulo Theories (SMT) Solvers

3

SMT Solver

Satisfiability Modulo Theories (SMT) Solvers

3

SMT Solverformula φ

Satisfiability Modulo Theories (SMT) Solvers

3

SMT Solverformula φ

satisfiable
model M

Satisfiability Modulo Theories (SMT) Solvers

3

SMT Solverformula φ unsatisfiable

satisfiable
model M

Satisfiability Modulo Theories (SMT) Solvers

3

?

SMT Solverformula φ unsatisfiable

satisfiable
model M

Satisfiability Modulo Theories (SMT) Solvers

3

?

SMT Solver
x < 1 ∧ y > 3 ∧ x < y
formula φ unsatisfiable

satisfiable
model M

Satisfiability Modulo Theories (SMT) Solvers

3

?

SMT Solver
x < 1 ∧ y > 3 ∧ x < y
formula φ unsatisfiable

satisfiable
model M

x ↦ 0, y ↦ 4

Satisfiability Modulo Theories (SMT) Solvers

3

?

SMT Solver
x < 1 ∧ y > 3 ∧ x < y
formula φ unsatisfiable

satisfiable
model M

x ↦ 0, y ↦ 4

x < 1 ∧ y > 3 ∧ x > y

Satisfiability Modulo Theories (SMT) Solvers

3

?

SMT Solver
x < 1 ∧ y > 3 ∧ x < y
formula φ unsatisfiable

satisfiable
model M

x ↦ 0, y ↦ 4

x < 1 ∧ y > 3 ∧ x > y

Automated Modular Verification

4

program

property φ

verification problem

?
checker

SMT Solver

Automated Modular Verification

4

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

Automated Modular Verification

4

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

Automated Modular Verification

4

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

…

Automated Modular Verification

4

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

…

Verification subproblems can involve discovery of inductive invariants

Verification of Transition Systems

5

For a transition system :(S, T, Init)

States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S

States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

States S

Verification of Transition Systems

5

For a transition system :(S, T, Init)

Want to prove safety property that no states are reachable from statesBad Init

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Formula is an inductive invariant for the system if the following hold:I

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula is an inductive invariant for the system if the following hold:I

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula is an inductive invariant for the system if the following hold:I

I

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′) ⇒ I(s′)

I

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′) ⇒ I(s′)

I

I

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′) ⇒ I(s′)

I

I

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′) ⇒ I(s′)

I

I

States S

Inductive Invariants for Transition Systems

6

For a transition system :(S, T, Init)

Init

Initial states Init ⊆ S
Transition relation Ts0

s1 T(s0, s1)

Bad states Bad ⊆ S
Bad

Initiation: ∀s ∈ Init . I(s)
Formula is an inductive invariant for the system if the following hold:I

Consecution: ∀s, s′ ∈ S . I(s) ∧ T(s, s′) ⇒ I(s′)

I

I

Can use invariants to help prove safety properties: ∀s ∈ S . I(s) ⇒ ¬Bad(s)

Automated Modular Verification

7

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

…

Automated Modular Verification

7

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

…

ind. inv. I1 ind. inv. I2

Automated Modular Verification

7

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

…

ind. inv. I1 ind. inv. I2

, I1 I2

Automated Modular Verification

7

program

property φ

verification problem

?
checker

SMT Solver

property φ ?1 property φ ?2

verification subproblems

…

ind. inv. I1 ind. inv. I2

, I1 I2

I1

I2

ind. inv. , I1 I2

Consider how to discover invariants

property φ

?
checker

SMT Solver

Invariant Discovery

program

8

Consider how to discover invariants

invariant discoverer

property φ

?
checker

SMT Solver

Invariant Discovery

program

8

Consider how to discover invariants

invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Invariant Discovery

program

8

Consider how to discover invariants

invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Invariant Discovery

program

8

Consider how to discover invariants

, I1 I2

invariant discoverer

property φ

I1

I2

ind. inv. , I1 I2

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Invariant Discovery

program

8

Consider how to discover invariants

Automatically finding and leveraging invariants hard in general

, I1 I2

invariant discoverer

property φ

I1

I2

ind. inv. , I1 I2

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Invariant Discovery

program

8

, I1 I2

invariant discoverer

property φ

I1

I2

ind. inv. , I1 I2

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Structure and Syntax

program

9

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

, I1 I2

invariant discoverer

property φ

I1

I2

ind. inv. , I1 I2

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Structure and Syntax

program

9

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

∧
=

, I1 I2

invariant discoverer

property φ

I1

I2

ind. inv. , I1 I2

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Structure and Syntax

program

9

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

∧
=

Will see specifics later on…

Contributions

How to exploit structure of both programs and properties
to infer and leverage invariants that improve scalability and performance

 in SMT-based automated verification.

10

Programs and Properties
Consider certain kinds of programs + properties rather than general ones

11

Programs and Properties
Consider certain kinds of programs + properties rather than general ones

11

programs

interprocedural
programs

intraprocedural
programs

Programs and Properties
Consider certain kinds of programs + properties rather than general ones

11

programs

interprocedural
programs

intraprocedural
programs

Programs and Properties
Consider certain kinds of programs + properties rather than general ones

11

programs properties

interprocedural
programs

intraprocedural
programs

Programs and Properties
Consider certain kinds of programs + properties rather than general ones

11

securitysafety
properties

k-safety
properties

programs properties

interprocedural
programs

intraprocedural
programs

Programs and Properties
Consider certain kinds of programs + properties rather than general ones

11

recursive

securitysafety
properties

k-safety
properties

programs properties

interprocedural
programs

intraprocedural
programs

Programs and Properties
Consider certain kinds of programs + properties rather than general ones

11

recursive

securitysafety
properties

k-safety
properties

information
flow

programs properties

Classes of Verification Problems

12

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

Classes of Verification Problems

12

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

Will talk about each of these in turn

Classes of Verification Problems

12

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

Will talk about each of these in turn

Will talk about the third most detail
(Extra slides on the second)

 II. Interprocedural Program
Verification III. Information-Flow Verification

Classes of Verification Problems

13

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program
Verification III. Information-Flow Verification

Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Classes of Verification Problems

13

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program
Verification III. Information-Flow Verification

Brief note about formalisms used to model each class of problems

Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Classes of Verification Problems

13

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program
Verification III. Information-Flow Verification

Brief note about formalisms used to model each class of problems

Cartesian Hoare Logic

Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Classes of Verification Problems

13

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program
Verification III. Information-Flow Verification

Brief note about formalisms used to model each class of problems

Cartesian Hoare Logic

Constrained Horn Clauses

Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Classes of Verification Problems

13

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program
Verification III. Information-Flow Verification

Brief note about formalisms used to model each class of problems

Cartesian Hoare Logic

Constrained Horn Clauses Constrained Horn Clauses

Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Classes of Verification Problems

13

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program
Verification III. Information-Flow Verification

Brief note about formalisms used to model each class of problems

• No (specialized) heap modeling
• No higher-order functions
• Static call graph

Cartesian Hoare Logic

Constrained Horn Clauses Constrained Horn Clauses

Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

I. k-safety Verification

14

k-safety

information
flow

Single-procedure programs
(may contain loops)

Properties over k copies of
the same program

intraprocedural
programs

Relational Invariants
Relate the k program copies at intermediate points

15

…

Relational Invariants
Relate the k program copies at intermediate points

15

……

Relational Invariants
Relate the k program copies at intermediate points

15

x1 x2
pre

xk

……

Relational Invariants
Relate the k program copies at intermediate points

15

x1 x2
pre

xk

y1 y2
post

yk

……

Relational Invariants
Relate the k program copies at intermediate points

15

How to leverage and how (where) to infer them for scalable verification?

x1 x2
pre

xk

y1 y2
post

yk

……

Symmetry and Synchrony

16

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony
How to leverage relational properties?

16

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony
How to leverage relational properties?

16

Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony
How to leverage relational properties?

16

A1

C1B1

D1

A2

C2B2

D2

=
Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony
How to leverage relational properties?

16

A1

C1B1

D1

A2

C2B2

D2

= B1

D1

B2

D2

B1

D1

C2

D2

C1

D1

B2

D2

C1

D1

C2

D2

Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

verification subtasks

Symmetry and Synchrony
How to leverage relational properties?

16

A1

C1B1

D1

A2

C2B2

D2

= B1

D1

B2

D2

B1

D1

C2

D2

C1

D1

B2

D2

C1

D1

C2

D2

Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

verification subtasks
Property symmetry 1 2

Symmetry and Synchrony
How to leverage relational properties?

16

A1

C1B1

D1

A2

C2B2

D2

= B1

D1

B2

D2

B1

D1

C2

D2

C1

D1

B2

D2

C1

D1

C2

D2

1 2
same subtask

Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

verification subtasks
Property symmetry 1 2

Symmetry and Synchrony
How to leverage relational properties?

16

A1

C1B1

D1

A2

C2B2

D2

= B1

D1

B2

D2

B1

D1

C2

D2

C1

D1

B2

D2

C1

D1

C2

D2

1 2
same subtask

Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

verification subtasks
How to infer relational properties?

Property symmetry 1 2

Symmetry and Synchrony
How to leverage relational properties?

16

A1

C1B1

D1

A2

C2B2

D2

= B1

D1

B2

D2

B1

D1

C2

D2

C1

D1

B2

D2

C1

D1

C2

D2

1 2
same subtask

Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
and Symmetry in Relational Verification, CAV'18

verification subtasks

Use synchrony technique for loops for fewer and simpler invariants
How to infer relational properties?

Property symmetry 1 2

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

k-safety Verification

17

property φ

program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

k-safety Verification

17

property φ

synchrony

program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

k-safety Verification

17

property φ

synchrony symmetry
∧

=program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

k-safety Verification

18

property φ

synchrony symmetry
∧

=program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Synchrony and symmetry help infer fewer, simpler relational invariants,
leading to the elimination of redundant verification subtasks.

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

k-safety Verification

18

property φ

synchrony symmetry
∧

=program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Synchrony and symmetry help infer fewer, simpler relational invariants,
leading to the elimination of redundant verification subtasks.

Solved 11/14 Java benchmarks in ~4 mins each, timed out in 1 hr otherwise
Achieved up to ~21 times speedup on the remaining 117

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

k-safety Verification

18

property φ

synchrony symmetry
∧

=program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Synchrony and symmetry help infer fewer, simpler relational invariants,
leading to the elimination of redundant verification subtasks.

Solved 11/14 Java benchmarks in ~4 mins each, timed out in 1 hr otherwise
Achieved up to ~21 times speedup on the remaining 117

(Largest benchmark ~200 LOC)

recursive

interprocedural
programs

safety
properties

II. Interprocedural Program Verification

19

Multiple-procedure programs
(may contain recursion)

General safety properties
(hoisted to entry procedure)

Interprocedural Programs

20

Example call graph

main

f even

g h odd
Have call graphs

recursive

interprocedural
programs

Interprocedural Programs

20

Example call graph

main

f even

g h odd
Have call graphs

recursive

interprocedural
programs

safety
propertyasserts

Interprocedural Programs

20

Example call graph

main

f even

g h odd
Have call graphs

recursive

interprocedural
programs

e.g., even(f(x)) mod 2 ≡ 0

safety
propertyasserts

Interprocedural Programs

20

Example call graph

main

f even

g h odd
Have call graphs

recursive

interprocedural
programs

e.g., even(f(x)) mod 2 ≡ 0

Will derive and use over- and under-approximate procedure summaries

safety
propertyasserts

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

f

g h

environment

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

f

g h

environment

f
summary
inference

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

f

g h

environment

f
summary
inference

to handle mutual recursion

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

even

odd

environment

f

g h

environment

f
summary
inference

to handle mutual recursion

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

even

odd

environment

summary
inference

even

f

g h

environment

f
summary
inference

to handle mutual recursion

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

even

odd

environment

summary
inference

even

f

g h

environment

f
summary
inference

to handle mutual recursion and scale verification

Modular Verification of Interprocedural Programs

21

main

f even

g h odd

Infer and use procedure summaries (invariants)

even

odd

environment

summary
inference

even

f

g h

environment

f
summary
inference

main

f even

checker

to handle mutual recursion and scale verification

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true)

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true)

summary
inference

most scalable

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true)

summary
inference

most scalable

property information abstracted away

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true)least relevant

f

summary
inference

most scalable

property information abstracted away

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true) f

g h

main

no abstraction
(large formula)least relevant

f

summary
inference

most scalable

property information abstracted away

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true) f

g h

main

no abstraction
(large formula)least relevant

f

most relevant

f

summary
inference

most scalable

property information abstracted away

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true) f

g h

main

no abstraction
(large formula)least relevant

f

most relevant

f

summary
inference

most scalable

property information abstracted away no scalability benefits from abstraction

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

any behavior
(true) f

g h

main

no abstraction
(large formula)least relevant

f

most relevant

f

summary
inference

most scalable

summary
inference

least scalable

property information abstracted away no scalability benefits from abstraction

SMT Solver

Scalable Inference vs. Relevance of Invariants

22

f

g h

What environment?

f

summary
inference

f

g h

main

abstract
f

g h

main

any behavior
(true) f

g h

main

no abstraction
(large formula)least relevant

f

most relevant

f

summary
inference

most scalable

summary
inference

least scalable

property information abstracted away no scalability benefits from abstraction

SMT Solver

Bounded Environments

23

main

f even

g h odd

even

main

f even

g h odd

even

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

1

2

3

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

1

2

3

3-bounded environment

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

1

2

3

1

2

3-bounded environment

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

1

2

3

1

2

3-bounded environment 2-bounded environment

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

1

2

3

1

2

use summaries
for callees of
procedures

within bound

3-bounded environment 2-bounded environment

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

abstract above bound

1

2

3

1

2

use summaries
for callees of
procedures

within bound

3-bounded environment 2-bounded environment

Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Bounded Environments

23

target procedure

main

f even

g h odd

even

main

f even

g h odd

even

abstract above bound

1

2

3

1

2

use summaries
for callees of
procedures

within bound

3-bounded environment 2-bounded environment

Larger bound, more relevant/less scalable Unbounded Procedure Summaries from
Bounded Environments, Pick et al., VMCAI’21

Interprocedural Program Verification

24

program invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Interprocedural Program Verification

24

program invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Bounded environments

Interprocedural Program Verification

24

program invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Bounded environments

I1 I2

Interprocedural Program Verification

24

program invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Bounded environments

I1 I2

summaries
(ind. inv.)

 I1 I2

Interprocedural Program Verification

25

program invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

summaries
(ind. inv.)

 I1 I2

To deal with mutual recursion, use environment-callee EC lemmas
Bounded environments

I1 I2

Interprocedural Program Verification

25

program invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

summaries
(ind. inv.)

 I1 I2

To deal with mutual recursion, use environment-callee EC lemmas
+ EC Lemma Template

F() ⇒ G()

Bounded environments

I1 I2

Interprocedural Program Verification

25

program invariant discoverer

property φ

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

summaries
(ind. inv.)

 I1 I2

To deal with mutual recursion, use environment-callee EC lemmas
+ EC Lemma Template

F() ⇒ G()

Bounded environments

I1 I2

EC Lemmas

Experimental Results

26

Implemented in tool called Clover built on top of FreqHorn constrained Horn clause solver
[Fedyukovich et al., 2017]

[1] Komuravelli et al., Formal Methods in Sys. Des.’16
[2] Hojjat and Rümer, FMCAD’18
[3] Champion et al., APLAS’18
[4] Satake et al., 2019
[5] Dietsch et al., HCVS/PERR’18

Experimental Results

26

Implemented in tool called Clover built on top of FreqHorn constrained Horn clause solver
[Fedyukovich et al., 2017]

Clover (b=10) Spacer [1] Eldarica [2] HoIce [3] PCSat [4] Ultimate [5]
CHC-Comp (101) 77 93 94 92 81 76

Real World (16) 16 8 12 14 3 15
Mutual
Recursion (46)

45 13 4 14 5 0

Total (163) 138 114 110 120 89 91

[1] Komuravelli et al., Formal Methods in Sys. Des.’16
[2] Hojjat and Rümer, FMCAD’18
[3] Champion et al., APLAS’18
[4] Satake et al., 2019
[5] Dietsch et al., HCVS/PERR’18

Experimental Results

26

Comparable to other tools in general (timeout 10 min)

Implemented in tool called Clover built on top of FreqHorn constrained Horn clause solver
[Fedyukovich et al., 2017]

Clover (b=10) Spacer [1] Eldarica [2] HoIce [3] PCSat [4] Ultimate [5]
CHC-Comp (101) 77 93 94 92 81 76

Real World (16) 16 8 12 14 3 15
Mutual
Recursion (46)

45 13 4 14 5 0

Total (163) 138 114 110 120 89 91

[1] Komuravelli et al., Formal Methods in Sys. Des.’16
[2] Hojjat and Rümer, FMCAD’18
[3] Champion et al., APLAS’18
[4] Satake et al., 2019
[5] Dietsch et al., HCVS/PERR’18

Experimental Results

26

Comparable to other tools in general (timeout 10 min)

Implemented in tool called Clover built on top of FreqHorn constrained Horn clause solver
[Fedyukovich et al., 2017]

Clover (b=10) Spacer [1] Eldarica [2] HoIce [3] PCSat [4] Ultimate [5]
CHC-Comp (101) 77 93 94 92 81 76

Real World (16) 16 8 12 14 3 15
Mutual
Recursion (46)

45 13 4 14 5 0

Total (163) 138 114 110 120 89 91

, excels at mutual recursion
[1] Komuravelli et al., Formal Methods in Sys. Des.’16
[2] Hojjat and Rümer, FMCAD’18
[3] Champion et al., APLAS’18
[4] Satake et al., 2019
[5] Dietsch et al., HCVS/PERR’18

Experimental Results

27

Experimental Results

27

EC Lemmas are useful!

Clover (b=10) Clover (b=10),
no EC lemmas

CHC-Comp 77 72

Real World 16 16

Mutual
Recursion

45 5

Total 138 93

Experimental Results

27

EC Lemmas are useful!

Clover (b=10) Clover (b=10),
no EC lemmas

CHC-Comp 77 72

Real World 16 16

Mutual
Recursion

45 5

Total 138 93

Different bounds help
for different benchmark sets

Unbounded Procedure Summaries from Bounded Environments 19

1 2 3 4 5 6 7 8 910

50

100

Bound

%
of

b
en

ch
m
ar
k
s
so
lv
ed

CHC-Comp Real-World Mutual Recursion

2 3 4 5 6 7 8 9 10
4.2

4.4

4.6

Bound

R
u
n
ti
m
e
(s
)
of

C
lo

v
e
r

5 6 7 8 9 10

40

50

60

Bound

R
u
n
ti
m
e
(s
)
of

C
lo

v
e
r

Fig. 7: Left: Percentage of benchmarks Clover solves with di↵erent bounds on di↵er-
ent benchmark categories; Center, Right: Timing results on a representative bench-
mark from CHC-Comp and Mutual Recursion, respectively.

the Even-Odd benchmarks, which Clover (with EC lemmas) can solve at any
bound value greater than 2. Other tools are unable to solve even half of the
Mutual Recursion benchmarks, reinforcing that Clover is a useful addition to
existing tools that enables handling of mutual recursion as a first class concern.

Usefulness of EC lemmas. Running Clover with and without EC lemmas
using bound k = 10 revealed their usefulness for many of the benchmarks. In
particular, the columns for bound 10 with and without EC lemmas in Table 2
show that EC lemmas are needed to allow Clover to solve several CHC-Comp
benchmarks and all the Mutual Recursion benchmarks except the Hofstadter
ones. These results indicate that Clover’s ability to outperform other tools on
the these benchmarks relies on EC lemmas.

Comparison of Di↵erent Bounds. Fig. 7 (left) shows the number of bench-
marks successfully solved by Clover in each set as the bound value is varied.
Running Clover with too small a bound impedes its ability to prove the prop-
erty or find a counterexample, since the environment is unable to capture su�-
cient information.On the other hand, running Clover with too large a bound
a↵ects the runtime negatively. This e↵ect can be observed in Fig. 7 center and
right, which show how the runtime varies with the bound for a representative
benchmark from the CHC-Comp and Mutual Recursion sets, respectively. Note
that at a bound k < 2, Clover does not solve the given CHC-Comp benchmark,
and at k < 5, Clover does not solve the given Mutual Recursion benchmark.
These results confirm the expected trade-o↵ between scalability and environ-
ment relevance. The appropriate trade-o↵ – i.e., the best bound parameter to
use – depends on the type of program and property. As seen in Fig. 7 (left), the
bound values that lead to the most benchmarks being solved di↵er per bench-
mark set. Rather than having a fixed bound, or no bound at all, the ability to
choose the bound parameter in Clover allows the best trade-o↵ for a particular
set of programs. If the best bound is not known a priori, bound parameters of
increasing size can be determined empirically on representative programs.

We also report data on how the number and solving time for each type of
SMT query varies with the bound k, averaged over benchmarks in each set.
Fig. 8 shows the statistics on the average number of queries of each type (top),
on the average time taken to solve the query (bottom). These data are from all
runs for which Clover is successful and gives an answer of safe or unsafe.

%
 b

en
ch

m
ar

ks
 s

ol
ve

d

bound

CHC-Comp

Real World

Mutual Recursion

Experimental Results

27

EC Lemmas are useful!

Clover (b=10) Clover (b=10),
no EC lemmas

CHC-Comp 77 72

Real World 16 16

Mutual
Recursion

45 5

Total 138 93

Different bounds help
for different benchmark sets

Unbounded Procedure Summaries from Bounded Environments 19

1 2 3 4 5 6 7 8 910

50

100

Bound

%
of

b
en

ch
m
ar
k
s
so
lv
ed

CHC-Comp Real-World Mutual Recursion

2 3 4 5 6 7 8 9 10
4.2

4.4

4.6

Bound

R
u
n
ti
m
e
(s
)
of

C
lo

v
e
r

5 6 7 8 9 10

40

50

60

Bound

R
u
n
ti
m
e
(s
)
of

C
lo

v
e
r

Fig. 7: Left: Percentage of benchmarks Clover solves with di↵erent bounds on di↵er-
ent benchmark categories; Center, Right: Timing results on a representative bench-
mark from CHC-Comp and Mutual Recursion, respectively.

the Even-Odd benchmarks, which Clover (with EC lemmas) can solve at any
bound value greater than 2. Other tools are unable to solve even half of the
Mutual Recursion benchmarks, reinforcing that Clover is a useful addition to
existing tools that enables handling of mutual recursion as a first class concern.

Usefulness of EC lemmas. Running Clover with and without EC lemmas
using bound k = 10 revealed their usefulness for many of the benchmarks. In
particular, the columns for bound 10 with and without EC lemmas in Table 2
show that EC lemmas are needed to allow Clover to solve several CHC-Comp
benchmarks and all the Mutual Recursion benchmarks except the Hofstadter
ones. These results indicate that Clover’s ability to outperform other tools on
the these benchmarks relies on EC lemmas.

Comparison of Di↵erent Bounds. Fig. 7 (left) shows the number of bench-
marks successfully solved by Clover in each set as the bound value is varied.
Running Clover with too small a bound impedes its ability to prove the prop-
erty or find a counterexample, since the environment is unable to capture su�-
cient information.On the other hand, running Clover with too large a bound
a↵ects the runtime negatively. This e↵ect can be observed in Fig. 7 center and
right, which show how the runtime varies with the bound for a representative
benchmark from the CHC-Comp and Mutual Recursion sets, respectively. Note
that at a bound k < 2, Clover does not solve the given CHC-Comp benchmark,
and at k < 5, Clover does not solve the given Mutual Recursion benchmark.
These results confirm the expected trade-o↵ between scalability and environ-
ment relevance. The appropriate trade-o↵ – i.e., the best bound parameter to
use – depends on the type of program and property. As seen in Fig. 7 (left), the
bound values that lead to the most benchmarks being solved di↵er per bench-
mark set. Rather than having a fixed bound, or no bound at all, the ability to
choose the bound parameter in Clover allows the best trade-o↵ for a particular
set of programs. If the best bound is not known a priori, bound parameters of
increasing size can be determined empirically on representative programs.

We also report data on how the number and solving time for each type of
SMT query varies with the bound k, averaged over benchmarks in each set.
Fig. 8 shows the statistics on the average number of queries of each type (top),
on the average time taken to solve the query (bottom). These data are from all
runs for which Clover is successful and gives an answer of safe or unsafe.

%
 b

en
ch

m
ar

ks
 s

ol
ve

d

bound

CHC-Comp

Real World

Mutual Recursion

e.g., bounds 7-9 were best
for Mutual Recursion

Related Work

28

Related Work

28

Constrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des.’16]
[McMillan, CAV’14]

[Hojjat and Rümer, FMCAD’18]
[Champion et al., APLAS’18]

[Dietsch et al., EPTCS’19]
[Grebenshchikov et al., PLDI’12]

[McMillan and Rybalchenko, 2013]

Related Work

28

Program Analysis and VerificationConstrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des.’16]
[McMillan, CAV’14]

[Hojjat and Rümer, FMCAD’18]
[Champion et al., APLAS’18]

[Dietsch et al., EPTCS’19]
[Grebenshchikov et al., PLDI’12]

[McMillan and Rybalchenko, 2013]

Related Work

28

Program Analysis and VerificationConstrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des.’16]
[McMillan, CAV’14]

[Hojjat and Rümer, FMCAD’18]
[Champion et al., APLAS’18]

[Dietsch et al., EPTCS’19]
[Grebenshchikov et al., PLDI’12]

[McMillan and Rybalchenko, 2013]

Abstract Interpretation
[Cousot and Cousot, IFIP’77]

[Cousot and Cousot, VMCAI’13]
[Fähndrich et al., FoVeOOS’10]

Related Work

28

Program Analysis and VerificationConstrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des.’16]
[McMillan, CAV’14]

[Hojjat and Rümer, FMCAD’18]
[Champion et al., APLAS’18]

[Dietsch et al., EPTCS’19]
[Grebenshchikov et al., PLDI’12]

[McMillan and Rybalchenko, 2013]

Interprocedural Dataflow Analysis
[Reps et al., POPL’95]

[Ball and Rajamani, PASTE’01]

Abstract Interpretation
[Cousot and Cousot, IFIP’77]

[Cousot and Cousot, VMCAI’13]
[Fähndrich et al., FoVeOOS’10]

Related Work

28

Program Analysis and VerificationConstrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des.’16]
[McMillan, CAV’14]

[Hojjat and Rümer, FMCAD’18]
[Champion et al., APLAS’18]

[Dietsch et al., EPTCS’19]
[Grebenshchikov et al., PLDI’12]

[McMillan and Rybalchenko, 2013]

Interprocedural Dataflow Analysis
[Reps et al., POPL’95]

[Ball and Rajamani, PASTE’01]

Summary Usage
[Godefroid et al., POPL’10]

Abstract Interpretation
[Cousot and Cousot, IFIP’77]

[Cousot and Cousot, VMCAI’13]
[Fähndrich et al., FoVeOOS’10]

Related Work

28

Program Analysis and VerificationConstrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des.’16]
[McMillan, CAV’14]

[Hojjat and Rümer, FMCAD’18]
[Champion et al., APLAS’18]

[Dietsch et al., EPTCS’19]
[Grebenshchikov et al., PLDI’12]

[McMillan and Rybalchenko, 2013]

Interprocedural Dataflow Analysis
[Reps et al., POPL’95]

[Ball and Rajamani, PASTE’01]

Summary Usage
[Godefroid et al., POPL’10]

Abstract Interpretation
[Cousot and Cousot, IFIP’77]

[Cousot and Cousot, VMCAI’13]
[Fähndrich et al., FoVeOOS’10]

Specification Inference
[Albargouthi et al., POPL’16]

[Alur et al., POPL’05]
[Ammons et al., POPL’02]

Related Work

28

Program Analysis and VerificationConstrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des.’16]
[McMillan, CAV’14]

[Hojjat and Rümer, FMCAD’18]
[Champion et al., APLAS’18]

[Dietsch et al., EPTCS’19]
[Grebenshchikov et al., PLDI’12]

[McMillan and Rybalchenko, 2013]

Interprocedural Dataflow Analysis
[Reps et al., POPL’95]

[Ball and Rajamani, PASTE’01]

Summary Usage
[Godefroid et al., POPL’10]

Abstract Interpretation
[Cousot and Cousot, IFIP’77]

[Cousot and Cousot, VMCAI’13]
[Fähndrich et al., FoVeOOS’10]

Specification Inference
[Albargouthi et al., POPL’16]

[Alur et al., POPL’05]
[Ammons et al., POPL’02]

No bounded environments or EC lemmas

III. Information Flow Checking for Interprocedural Programs

29

Multiple-procedure programs
(may contain recursion)

Information-flow security properties

information
flow

recursive

interprocedural
programs

Information-flow properties

30

Information-flow properties

30

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:

Information-flow properties

30

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:
“High-security inputs do not leak information to low-security outputs.”

Information-flow properties

30

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:
“High-security inputs do not leak information to low-security outputs.”
High-security inputs shown in red

Information-flow properties

30

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:

x1
=

y2y1 x2

“High-security inputs do not leak information to low-security outputs.”
High-security inputs shown in red

Information-flow properties

30

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:

x1
=

y2y1 x2

z1 w1
=

z2w2

“High-security inputs do not leak information to low-security outputs.”
High-security inputs shown in red

Product Programs

31

x1
=

y2y1 x2

z1 w1
=

z2w2

Can turn k-safety
property

into safety
property

by constructing a product program

Secure information flow by self-composition, Barthe et al., CSFW’04
Relational verification using product programs, Barthe et al., FM’11

Product Programs

31

x1
=

y2y1 x2

z1 w1
=

z2w2

Can turn k-safety
property

into safety
property

by constructing a product program

Secure information flow by self-composition, Barthe et al., CSFW’04
Relational verification using product programs, Barthe et al., FM’11

Modular Product Programs

32

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

32

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

Labels denote input variables

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

32

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b,b′

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Labels denote input variables

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

32

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b,b′

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Activation variables , specify if copy is activeb b′

Labels denote input variables

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

33

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b = false,b′ = true

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Activation variables , specify if copy is activeb b′

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

33

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b = false,b′ = true

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Activation variables , specify if copy is activeb b′

h

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

33

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b = false,b′ = true

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Activation variables , specify if copy is activeb b′

h
kin, k′ in, b = false,b′ = true

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

33

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b = false,b′ = true

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Activation variables , specify if copy is activeb b′

h

k

kin, k′ in, b = false,b′ = true

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

33

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b = false,b′ = true

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Activation variables , specify if copy is activeb b′

h

k

kin, k′ in, b = false,b′ = true

Required user-provided annotations (which variables are high-/low-security?)

Modular product programs, Eilers et al., ESOP’18

Modular Product Programs

33

f

g h

i j k

f’

g’ h’

i’ j’ k’

gin hin

iin jin
hin

kin

g′ in h′ in

i′ in j′ in
h′ in

k′ in

f f’

g g’ h h’

i i’ j j’ k k’

gin, g′ in, b,b′ hin, h′ in, b = false,b′ = true

 iin, i′ in,
b,b′

 jin, j′ in,
b,b′

 hin, h′ in,
b,b′

kin, k′ in, b,b′

b,b′

Activation variables , specify if copy is activeb b′

h

k

kin, k′ in, b = false,b′ = true

Required user-provided annotations (which variables are high-/low-security?)
Can we infer these invariants?

Modular product programs, Eilers et al., ESOP’18

invariant discoverer

property φ

?
checker

SMT Solver

Adapting Interprocedural Program Verification

34

Bounded environments
EC Lemma Template

Summaries

product
program

∧
=

summaries
(ind. inv.)

invariant discoverer

property φ

?
checker

SMT Solver

Adapting Interprocedural Program Verification

34

Bounded environments
EC Lemma Template

Summaries
specialized
inference

Information-flow Templates
product
program

∧
=

summaries
(ind. inv.)

Syntax-Guided Synthesis (SyGuS)

35 Syntax-Guided Synthesis, Alur et al., FMCAD’13

Synthesizer

Specification S Syntactic Restrictions R

Program/Summary P

Syntax-Guided Synthesis (SyGuS)

35 Syntax-Guided Synthesis, Alur et al., FMCAD’13

Synthesizer

Specification S Syntactic Restrictions R

Program/Summary P

P R∃ ∈ [[]] . ∀i . ⊨P (i) S (i)

Syntax-Guided Synthesis (SyGuS)

35 Syntax-Guided Synthesis, Alur et al., FMCAD’13

Synthesizer

Specification S Syntactic Restrictions R

Program/Summary P

P R∃ ∈ [[]] . ∀i . ⊨P (i) S (i)

can be provided by a grammar

Syntax-Guided Synthesis (SyGuS)

35 Syntax-Guided Synthesis, Alur et al., FMCAD’13

Synthesizer

Specification S Syntactic Restrictions R

Program/Summary P

SMT Solver

P R∃ ∈ [[]] . ∀i . ⊨P (i) S (i)

can be provided by a grammar

Information-Flow Summary Inference

36

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

SMT Solver

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

SMT Solver

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

SMT Solver

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

SMT Solver

Specification

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

SMT Solver

Specification
g g’ over-approximates g g’

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

meets specification?

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

meets specification?

no

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

meets specification?

noguess
x = x′ ⇒ z = z′

Information-Flow Summary Inference

36

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference?

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

meets specification?

noguess
x = x′ ⇒ z = z′

Inferring Summaries with SyGuS

37

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template?

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

meets specification?

noguess
x = x′ ⇒ z = z′

Inferring Summaries with SyGuS

37

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template?

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

meets specification?

noguess
x = x′ ⇒ z = z′

Will talk about three kinds

Inferring Summaries with SyGuS

37

over-approximate summary

target
procedure

g g’

i i’ j j’

environment

g g’

summary inference

Syntax-Guided Synthesis (SyGuS)

Synthesizer

SMT Solver

Specification
g g’ over-approximates g g’

Syntactic Restriction
(Grammar)Grammar template?

eq ::= x = x′ |a[i] = a′ [i] | . . .

Guess-and-Check

guess
x = x′ ⇒ y = y′

meets specification?

noguess
x = x′ ⇒ z = z′

Will talk about three kinds

Quantifier-Free

Quantified Array

Property-Directed

Grammar Templates

38

Grammar Templates

38

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

Grammar Templates

38

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

Grammar Templates

38

Insight:
information flow involves equalities on subsets of corresponding components

 ∧ ⇒
activation
variables input equalities output

equality

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Insight:
information flow involves equalities on subsets of corresponding components

 ∧ ⇒
activation
variables input equalities output

equality

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Insight:
information flow involves equalities on subsets of corresponding components

 b ∧ b′ ∧ ⇒
activation
variables input equalities output

equality

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Insight:
information flow involves equalities on subsets of corresponding components

 b ∧ b′ x = x′ ∧ y = y′ ∧ ⇒
activation
variables input equalities output

equality

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Insight:
information flow involves equalities on subsets of corresponding components

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

 ∧ ⇒
activation
variables

equalities cell
property

 ∧ ∀
quantified

indices

 .
range

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

g g’

x, x′ , y, y′ , b,b′

z, z′

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

 ∧ ⇒
activation
variables

equalities cell
property

 ∧ ∀
quantified

indices

 .
range

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

g g’

x, x′ , y, y′ , b,b′

z, z′

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

 ∧ ⇒
activation
variables

equalities cell
property

 ∧ ∀
quantified

indices

 .
range

 i, i′

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

g g’

x, x′ , y, y′ , b,b′

z, z′

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

 ∧ ⇒
activation
variables

equalities cell
property

 ∧ ∀
quantified

indices

 .
range

 i, i′ 0 ≤ i < y

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

g g’

x, x′ , y, y′ , b,b′

z, z′

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

 ∧ ⇒
activation
variables

equalities cell
property

 ∧ ∀
quantified

indices

 .
range

 b ∧ b′ i, i′ 0 ≤ i < y

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

g g’

x, x′ , y, y′ , b,b′

z, z′

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

 ∧ ⇒
activation
variables

equalities cell
property

 ∧ ∀
quantified

indices

 .
range

 i = i′ ∧ y = y′ b ∧ b′ i, i′ 0 ≤ i < y

Quantifier-free

Grammar Templates

38

g g’

w, w′ , x, x′ , y, y′ , b,b′

z, z′

Quantified Array

Insight:
information flow involves equalities on subsets of corresponding components

g g’

x, x′ , y, y′ , b,b′

z, z′

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equality

 ∧ ⇒
activation
variables

equalities cell
property

 ∧ ∀
quantified

indices

 .
range

 i = i′ ∧ y = y′ b ∧ b′ z[i] = z′ [i′] i, i′ 0 ≤ i < y

Property-Directed Summaries

39

f f’

g g’ h h’

i i’ j j’ k k’

Property-Directed Summaries

39

asserts information
flow propertyf f’

g g’ h h’

i i’ j j’ k k’

Property-Directed Summaries

39

asserts information
flow propertyf f’

g g’ h h’

i i’ j j’ k k’

captured in

Property-Directed Summaries

39

environment

g g’

gin, g′ in, b,b′

gout, g′ out

asserts information
flow propertyf f’

g g’ h h’

i i’ j j’ k k’

captured in

Property-Directed Summaries

39

environment

g g’

gin, g′ in, b,b′

gout, g′ out

asserts information
flow propertyf f’

g g’ h h’

i i’ j j’ k k’

captured in

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equalities

Property-Directed Summaries

39

environment

g g’

gin, g′ in, b,b′

gout, g′ out

asserts information
flow propertyf f’

g g’ h h’

i i’ j j’ k k’

captured in

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equalities

 ∧environment
Conjuncts in

Property-Directed Summaries

39

environment

g g’

gin, g′ in, b,b′

gout, g′ out

asserts information
flow propertyf f’

g g’ h h’

i i’ j j’ k k’

captured in

 b ∧ b′ x = x′ ∧ y = y′ z = z′ ∧ ⇒
activation
variables input equalities output

equalities

 ∧environment
Conjuncts in

Useful for handling declassification

Declassification
Non-interference alone can be too restrictive

40

Password recognizer

Declassification
Non-interference alone can be too restrictive

40

Password recognizerhigh-security: input

Declassification
Non-interference alone can be too restrictive

40

Password recognizer low-security: correct?high-security: input

Declassification
Non-interference alone can be too restrictive

40

Password recognizer low-security: correct?high-security: input

Can declassify to allow some leakage

Declassification
Non-interference alone can be too restrictive

40

Password recognizer low-security: correct?high-security: input
declassify(input = password)

Can declassify to allow some leakage

Declassification
Non-interference alone can be too restrictive

40

Password recognizer low-security: correct?high-security: input
declassify(input = password)

Can declassify to allow some leakage

Declassification can be captured in the environment

Experimental Results

41

Implemented in tool called Flower built on top of Clover

[1] SMT-based model-checking for recursive
programs, Komuravelli et al. FMSD.’16
[2] Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Experimental Results

41

Implemented in tool called Flower built on top of Clover

N
um

be
r o

f B
en

ch
m

ar
ks

0

6

12

18

24

30

Tool

Flower Spacer[1] Descartes[2]

6

1
14

4

14

29

Verified Timeout (10min) Unknown

[1] SMT-based model-checking for recursive
programs, Komuravelli et al. FMSD.’16
[2] Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Experimental Results

41

Implemented in tool called Flower built on top of Clover

N
um

be
r o

f B
en

ch
m

ar
ks

0

6

12

18

24

30

Tool

Flower Spacer[1] Descartes[2]

6

1
14

4

14

29

Verified Timeout (10min) Unknown

Unknown indicates inferred invariants too weak
[1] SMT-based model-checking for recursive
programs, Komuravelli et al. FMSD.’16
[2] Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Experimental Results

41

Implemented in tool called Flower built on top of Clover

Ti
m

e
(s

)

0

150

300

450

600

Array Size

2 4 8 16

Flower
Spacer

timeout

N
um

be
r o

f B
en

ch
m

ar
ks

0

6

12

18

24

30

Tool

Flower Spacer[1] Descartes[2]

6

1
14

4

14

29

Verified Timeout (10min) Unknown

Unknown indicates inferred invariants too weak
[1] SMT-based model-checking for recursive
programs, Komuravelli et al. FMSD.’16
[2] Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Experimental Results

41

Implemented in tool called Flower built on top of Clover

Ti
m

e
(s

)

0

150

300

450

600

Array Size

2 4 8 16

Flower
Spacer

timeout

N
um

be
r o

f B
en

ch
m

ar
ks

0

6

12

18

24

30

Tool

Flower Spacer[1] Descartes[2]

6

1
14

4

14

29

Verified Timeout (10min) Unknown

Unknown indicates inferred invariants too weak

Parametrizable benchmark shows
array size does not affect Flower’s performance
because of quantified template

[1] SMT-based model-checking for recursive
programs, Komuravelli et al. FMSD.’16
[2] Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Information-Flow Checking

Related Work

42

Relational Program Verification

Information-Flow Checking

Related Work

42

Relational Program Verification

Non-modular approaches
[Barthe et al., CSFW’04]
[Barthe et al., FM’11] [Sousa and Dillig, PLDI’16]

[Terauchi and Aiken, SAS’05] [Banerjee et al., FSTTCS’16]
[Beringer, ITP’11]

Information-Flow Checking

Related Work

42

Relational Program Verification

Modular, non-automated
[Eilers et al., ESOP’18]

Non-modular approaches
[Barthe et al., CSFW’04]
[Barthe et al., FM’11] [Sousa and Dillig, PLDI’16]

[Terauchi and Aiken, SAS’05] [Banerjee et al., FSTTCS’16]
[Beringer, ITP’11]

Information-Flow Checking

Related Work

42

Relational Program Verification

Modular, non-automated
[Eilers et al., ESOP’18]

Security-Type Systems
[Denning and Denning, Commun. ACM, 1977]

[Volpano et al., 1996]

Non-modular approaches
[Barthe et al., CSFW’04]
[Barthe et al., FM’11] [Sousa and Dillig, PLDI’16]

[Terauchi and Aiken, SAS’05] [Banerjee et al., FSTTCS’16]
[Beringer, ITP’11]

Information-Flow Checking

Related Work

42

Relational Program Verification

Modular, non-automated
[Eilers et al., ESOP’18]

Security-Type Systems
[Denning and Denning, Commun. ACM, 1977]

[Volpano et al., 1996]

Dynamic Taint Analysis
[Sarwar et al., SECRYPT’13]

Non-modular approaches
[Barthe et al., CSFW’04]
[Barthe et al., FM’11] [Sousa and Dillig, PLDI’16]

[Terauchi and Aiken, SAS’05] [Banerjee et al., FSTTCS’16]
[Beringer, ITP’11]

Information-Flow Checking

Related Work

42

Relational Program Verification

Modular, non-automated
[Eilers et al., ESOP’18]

Security-Type Systems
[Denning and Denning, Commun. ACM, 1977]

[Volpano et al., 1996]

Syntax-Guided Synthesis for
Quantified Array Invariants

[Fedyukovich et al., CAV’19]

Dynamic Taint Analysis
[Sarwar et al., SECRYPT’13]

Non-modular approaches
[Barthe et al., CSFW’04]
[Barthe et al., FM’11] [Sousa and Dillig, PLDI’16]

[Terauchi and Aiken, SAS’05] [Banerjee et al., FSTTCS’16]
[Beringer, ITP’11]

, I1 I2

invariant discoverer

property φ

I1

I2

?
checker

SMT Solver

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

Structure and Syntax

program

43

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

∧
=

∧
=

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

Structure and Syntax

44

property φ

program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

Structure and Syntax

44

property φ

synchrony

program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

Structure and Syntax

44

property φ

synchrony symmetry
∧

=program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

Structure and Syntax

45

property φ

program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Structural info about programs and properties can help with:
• performance
• scalability
• relevanceBounded environments

EC Lemma Template

?

ind. inv. ?I1 ind. inv. ?I2

∧
=

Structure and Syntax

46

property φ

program

, I1 I2

invariant discoverer

ind. inv. ?I1

verification subproblems

ind. inv. ?I2

checker

SMT Solver

Structural info about programs and properties can help with:
• performance
• scalability
• relevance

Information-flow Templates

Contributions

How to exploit structure of both programs and properties
to infer and leverage invariants that improve scalability and performance

 in SMT-based automated verification.

47

Future Work

48

 II. Interprocedural Program
Verification III. Information-Flow Verification

I. k-safety Verification

 II. Interprocedural Program
Verification III. Information-Flow Verification

Cartesian Hoare Logic [2]

Constrained Horn Clauses Constrained Horn Clauses

[2] Cartesian Hoare Logic, Sousa and Dillig, PLDI’16

Symmetry-breaking for
Constrained Horn Clauses

Handle heaps: Constrained Horn Clauses + heaps [1]

[1] Towards an SMT-Lib Theory of Heap, Esen and Rümmer, IJCAR’20

Extra slides

Invariants

50

invariant
synthesizer

How to make it easy to infer relational properties with symmetries?

Invariants

50

invariant
synthesizer

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

How to make it easy to infer relational properties with symmetries?

Invariants

50

invariant
synthesizer

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

How to make it easy to infer relational properties with symmetries?

Invariants

50

invariant
synthesizer

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

infer simpler relational invariants
that are more likely to have symmetries

How to make it easy to infer relational properties with symmetries?

Invariants

50

invariant
synthesizer

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

=

infer simpler relational invariants
that are more likely to have symmetries

How to make it easy to infer relational properties with symmetries?

Invariants

50

invariant
synthesizer

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

=

=

infer simpler relational invariants
that are more likely to have symmetries

How to make it easy to infer relational properties with symmetries?

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

i iterations

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

i iterations j iterations

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

i iterations j iterations

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

i iterations j iterations

invi

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

i iterations j iterations

invi

invj

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Synchrony for Loops
How to make it easy to infer relational loop invariants?

51

i iterations j iterations

Use one simple relational loop invariant per set of “lockstep” loops.

invi

invj

[Barthe et al., 2011]
[Sousa and Dillig, 2016]

Maximal Lockstep Loop Detection

52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

[Pick et al., 2018]

Maximal Lockstep Loop Detection

52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

I and

[Pick et al., 2018]

Maximal Lockstep Loop Detection

52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

I and or or or() One loop terminated

[Pick et al., 2018]

Maximal Lockstep Loop Detection

52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

I and or or or() One loop terminated

implies

[Pick et al., 2018]

Maximal Lockstep Loop Detection

52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

I and or or or() One loop terminated

and and and All loops have terminated

implies

[Pick et al., 2018]

Maximal Lockstep Loop Detection

52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

I and or or or() One loop terminated

and and and All loops have terminated

implies

Ask as SMT query, and use model to partition

[Pick et al., 2018]

Maximal Lockstep Loop Detection

52

Synthesize simple relational invariant , then do partition-refinement:I

At each step, ask:

I and or or or() One loop terminated

and and and All loops have terminated

implies

Ask as SMT query, and use model to partition

Different number of iterations

[Pick et al., 2018]

Summary Inference

53

even

odd

environment

even

summary
inference?

target procedure

Summary Inference

53

even

odd

environment

even

summary
inference?

SMT Solvertarget procedure

Summary Inference

53

even

odd

environment

evensummary
inference?

over-approximate summary

SMT Solver

even

target procedure

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

SMT Solver

even

target procedure

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

SMT Solver

even

target procedure

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

SMT Solver

even

target procedure

y′ = 2x + 2

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

x > 0 ⇒ y′ > x

SMT Solver

even

target procedure

y′ = 2x + 2

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

x > 0 ⇒ y′ > x

SMT Solver

even

target procedure

y′ = 2x + 2

implied by actual semantics

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

x > 0 ⇒ y′ > x

x = 0 ∧ y′ = 2

SMT Solver

even

target procedure

y′ = 2x + 2

implied by actual semantics

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

x > 0 ⇒ y′ > x

x = 0 ∧ y′ = 2

SMT Solver

even

target procedure

y′ = 2x + 2

implied by actual semantics

implies actual semantics

Summary Inference

53

even

odd

environment

evensummary
inference?

even

over-approximate summary

under-approximate summary

example: 𝚢 ← 𝟸𝚡 + 𝟸

x > 0 ⇒ y′ > x

x = 0 ∧ y′ = 2

SMT Solver

even

target procedure

y′ = 2x + 2

implied by actual semantics

implies actual semantics

Will make four SMT queries, over- and under-approximating both environment and target procedure

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

SMT Solver

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

E
encode as

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as

over-over query
 E ∧ P

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as

over-over query
 E ∧ P

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

Interpolant

even
E
encode as

P

encode as

over-over query
 E ∧ P

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

Interpolant

even
E
encode as

P

encode as

over-over query
 E ∧ P

Interpolant
even

odd

even

odd

Separates target from environment

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

Interpolant

even
E
encode as

P

encode as

over-over query
 E ∧ P

Interpolant
even

odd

even

odd

Separates target from environment

Over-Approximate Summary Inference

54

summary inferenceeven

odd

even

odd

over-approximate environment

SMT Solver

over-approximate target

Interpolant

even

Try to get less general summary

E
encode as

P

encode as

over-over query
 E ∧ P

Interpolant
even

odd

even

odd

Separates target from environment

Over-Approximate Summary Inference

55

summary inferenceeven

odd

even

odd

SMT Solver

over-approximate target

E
encode as

P

encode as

Interpolant
even

odd

even

odd

Separates target from environment

Interpolant

even

Over-Approximate Summary Inference

55

summary inferenceeven

odd

even

odd

under-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as

Interpolant
even

odd

even

odd

Separates target from environment

Interpolant

even

Over-Approximate Summary Inference

55

summary inferenceeven

odd

even

odd

under-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as

 E ∧ P
under-over query

Interpolant
even

odd

even

odd

Separates target from environment

Interpolant

even

Under-Approximate Summary Inference

56

summary inference

even

odd

even

SMT Solver

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

P

encode as

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

P

encode as

under-under query
 E ∧ P

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

P

encode as

under-under query
 E ∧ P

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

P

encode as

under-under query
 E ∧ P

even

P

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

P

encode as

under-under query
 E ∧ P

even

P

Under-approximation must occur in the environment,
so worth remembering

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

P

encode as

under-under query
 E ∧ P

even

P

Under-approximation must occur in the environment,
so worth remembering

Under-Approximate Summary Inference

56

summary inference

even

odd

even

under-approximate environment

SMT Solver

under-approximate target

E
encode as

P

encode as

under-under query
 E ∧ P

even

P

Under-approximation must occur in the environment,
so worth remembering

Try for possibly-less-relevant summary

Under-Approximate Summary Inference

57

summary inference

even

odd

even

SMT Solver

over-approximate target

E
encode as

P

encode as even

P

Under-Approximate Summary Inference

57

summary inference

even

odd

even

over-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as even

P

Under-Approximate Summary Inference

57

summary inference

even

odd

even

over-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as

over-under query
 E ∧ P

even

P

Under-Approximate Summary Inference

57

summary inference

even

odd

even

over-approximate environment

SMT Solver

over-approximate target

E
encode as

P

encode as

over-under query
 E ∧ P

even

P

Under-approximation may occur in the environment,
so worth remembering

Mutual Recursion

58

even

odd

Mutual Recursion

58

even

odd

even

odd

Unfolding:
even

odd

Mutual Recursion

58

even

odd

even

odd

Unfolding:
even

odd

How much to unfold?

Mutual Recursion

58

even

odd

even

odd

Unfolding:
even

odd

How much to unfold?
Can’t do induction directly on even

Mutual Recursion

58

even

odd

even

odd

Unfolding:
even

odd

How much to unfold?

even'

Inlining:

Can’t do induction directly on even

Mutual Recursion

58

even

odd

even

odd

Unfolding:
even

odd

How much to unfold?

even'

Inlining:

No summary for odd

Can’t do induction directly on even

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Possible EC Lemma

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

 property about target procedure⇒

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

 property about target procedure⇒

SMT Solver

¬

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

 property about target procedure⇒

SMT Solver

¬

EC lemma valid, so learn it

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

 property about target procedure⇒

SMT Solver

¬

EC lemma valid, so learn it

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

Possible EC Lemma

 property about target procedure⇒

SMT Solver

¬

EC lemma valid, so learn it

∀x, y . 𝚘𝚍𝚍(x) = y ⇒ (y ⇔ (1 + x) mod 2 ≡ 0)

“ ’s output is always odd”𝚘𝚍𝚍

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

⇒ ∀w, z . 𝚎𝚟𝚎𝚗(w) = z ⇒ (z ⇔ w mod 2 ≡ 0)
“Implies ’s output is always even”𝚎𝚟𝚎𝚗

Possible EC Lemma

SMT Solver

¬

EC lemma valid, so learn it

∀x, y . 𝚘𝚍𝚍(x) = y ⇒ (y ⇔ (1 + x) mod 2 ≡ 0)

“ ’s output is always odd”𝚘𝚍𝚍

Environment-Callee (EC) Lemmas

59

Express relationships between summaries of procedures on the same call path in a program

even

odd

even

odd

EC Lemma Learner

⇒ ∀w, z . 𝚎𝚟𝚎𝚗(w) = z ⇒ (z ⇔ w mod 2 ≡ 0)
“Implies ’s output is always even”𝚎𝚟𝚎𝚗

Possible EC Lemma

SMT Solver

¬

EC lemma valid, so learn it

∀x, y . 𝚘𝚍𝚍(x) = y ⇒ (y ⇔ (1 + x) mod 2 ≡ 0)

“ ’s output is always odd”𝚘𝚍𝚍

learn: “ ’s output always being odd implies that ’s output is always even”𝚘𝚍𝚍 𝚎𝚟𝚎𝚗

