Scaling Automatic Modular
Verification

Lauren Pick

Automated Software Verification

verification problem

Automated Software Verification

verification problem

program

Automated Software Verification

verification problem

program

property @

Automated Software Verification

verification problem

program

property @

Automated Software Verification

verification problem ls there an execution of program

that violates property?

program

property ¢

Automated Software Verification

verification problem ls there an execution of program

program that violates property?

SMT Solver

checker

property ¢

Automated Software Verification

verification problem ls there an execution of program

program that violates property?

SMT Solver

checker

property ¢

Automated Software Verification

verification problem ls there an execution of program

that violates property?

SMT Solver

checker

property ¢

Automated Software Verification

verification problem ls there an execution of program

that violates property?

SMT Solver

checker

property ¢

Automated Software Verification

verification problem ls there an execution of program

that violates property?

SMT Solver

checker

property ¢

Undecidable in general.

2

Satisfiability Modulo Theories (SMT) Solvers

SMT Solver

Satisfiability Modulo Theories (SMT) Solvers

formula ¢ ﬁ

Satisfiability Modulo Theories (SMT) Solvers

V satisfiable

/ model M

formula ¢ ﬁ

Satisfiability Modulo Theories (SMT) Solvers

V satisfiable

/ model M

formula ¢ ﬁ ﬁx unsatisfiable

Satisfiability Modulo Theories (SMT) Solvers

V satisfiable

/ model M

—— x unsatisfiable

\d

?

formula ¢ ﬁ

Satisfiability Modulo Theories (SMT) Solvers

V satisfiable

/ model M

—— x unsatisfiable

formula ¢ ﬁ

X<1IAy>3Ax<Yy \

?

Satisfiability Modulo Theories (SMT) Solvers

V satisfiable
model M
x—=0,y—4
formula ¢ "“"’Eﬂﬂiiﬂ!l '--"

X<1IAy>3Ax<Yy \

Satisfiability Modulo Theories (SMT) Solvers

/

formula ¢ ﬁ ﬁx unsatisfiable

X<IAyYy>3Ax<Yy
X<1IAY>3Ax>Yy

Satisfiability Modulo Theories (SMT) Solvers

/

ﬁ

\d

?

formula ¢ "“"’Eﬂﬂiiﬂ!l

X<1IAy>3Ax<Yy
X<1IAY>3Ax>Yy

Automated Modular Verification

verification problem

program

SMT Solver

checker

v
X

?

property ¢

Automated Modular Verification

e L verification subproblems
verification problem

oL

property ¢,7 property ¢,?

SMT Solver

checker

v
X

?

property ¢

Automated Modular Verification

e L verification subproblems
verification problem

oL

property ¢,7 property ¢,?

PR

checker

v
X

?

property ¢

Automated Modular Verification

e L verification subproblems
verification problem

oL

property ¢,7 property ¢,?

PR

checker

v
X

?

property ¢

Automated Modular Verification

e L verification subproblems
verification problem

oL

property ¢,7 property ¢,?

SMT Solver

checker

property ¢

Verification subproblems can involve discovery of inductive invariants
4

Verification of Transition Systems

For a transition system (S, 7, Init):

Verification of Transition Systems

For a transition system (S, 7, Init):

States S

Verification of Transition Systems

For a transition system (S, 7, Init):

States S
Initial states Init C S

Verification of Transition Systems

For a transition system (S, 7, Init):

States S
Initial states Init C S

Transition relation 1’

Verification of Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1’

Bad states Bad C §

Verification of Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Want to prove safety property that no Bad states are reachable from /nit states

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1’

Bad states Bad C §

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs &€ Init. [(s)

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs &€ Init. [(s)

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs € [nir. I(s)
Consecution: Vs, s' &€ S.I(s) A T(s,s") = I(s)

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs € [nir. I(s)
Consecution: Vs, s' &€ S.I(s) A T(s,s") = I(s)

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs € [nir. I(s)
Consecution: Vs, s' &€ S.I(s) A T(s,s") = I(s)

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs € [nir. I(s)
Consecution: Vs, s' &€ S.I(s) A T(s,s") = I(s)

Inductive Invariants for Transition Systems

For a transition system (S, 7, Init):
States §

Initial states Init C S

Transition relation 1

Bad states Bad C §

Formula / is an inductive invariant for the system if the following hold:
Initiation: Vs € [nir. I(s)

Consecution: Vs, s' &€ S.I(s) A T(s,s") = I(s)

Can use invariants to help prove safety properties: Vs € S.I(s) = " Bad(s)

6

Automated Modular Verification

e L verification subproblems
verification problem

oL

property ¢,7 property ¢,?

PR

checker

v
X

?

property ¢

Automated Modular Verification

e L verification subproblems
verification problem

program‘& g@ [%
ind.inv.l; ? ind.inv.l, ?

PR

checker

v
X

?

property ¢

Automated Modular Verification

e L verification subproblems
verification problem

program/(l‘ g@

nd.inv.l;, ? ind.inv.l, ?

v
D ST Solver] ey, 3¢

I, 1, checker

?

property ¢

Automated Modular Verification

verification subproblems
verification problem

O 1% 3

ind.inv.l;, ? ind.inv.l, ?
@' ‘) pE—
I, 1, checker

ind. inv. /;, 12

v
X

?

property ¢

Invariant Discovery

Consider how to discover invariants

program

property ¢

v
X

SMT Solver

checker

P

?

Invariant Discovery

Consider how to discover invariants

program invariant discoverer

property ¢

SMT Solver

checker

Invariant Discovery

Consider how to discover invariants

invariant discoverer
verification subproblems

ﬁ;'nm 115% ind. inv. 1,7

SMT Solver

checker

program

property ¢

Invariant Discovery

Consider how to discover invariants

invariant discoverer
verification subproblems

ﬁ;'nm 115% ind. inv. 1,7

SMT Solver

checker

program

property ¢

Invariant Discovery

Consider how to discover invariants

invariant discoverer
verification subproblems

ﬁ;'nm 115% ind. inv. 1,7

SMT Solver

checker

program

property ¢

ind. inv. [, [,

Invariant Discovery

Consider how to discover invariants

invariant discoverer
verification subproblems

ﬁ;'nm 115% ind. inv. 1,7

SMT Solver

checker

program

property ¢

ind. inv. [, [,

Automatically finding and leveraging invariants hard in general

8

Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability
e relevance

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

property ¢

ind. inv. /;, /,

Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability

 relevance
program dégb invariant discoverer

verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

property ¢

ind. inv. [, [,

Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability

 relevance
program dégb invariant discoverer

verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

property ¢

ind. inv. [, [,

Will see specifics later on...

Contributions

How to exploit structure of both programs and properties
to infer and leverage invariants that improve scalability and performance
in SMT-based automated verification.

10

Programs and Properties

Consider certain kinds of programs + properties rather than general ones

Programs and Properties

Consider certain kinds of programs + properties rather than general ones

programs

i

Programs and Properties

Consider certain kinds of programs + properties rather than general ones

programs

intraprocedural
programs

interprocedural
programs

i

Programs and Properties

Consider certain kinds of programs + properties rather than general ones

programs properties

intraprocedural
programs

interprocedural
programs

i

Programs and Properties

Consider certain kinds of programs + properties rather than general ones

programs properties

intraprocedural k-safety
programs properties

interprocedural safety
programs properties

i

Programs and Properties

Consider certain kinds of programs + properties rather than general ones

programs properties

intraprocedural k-safety
programs properties

interprocedural safety
programs properties

i

Programs and Properties

Consider certain kinds of programs + properties rather than general ones

programs properties

intraprocedural k-safety
programs properties

information
flow

interprocedural safety
programs properties

i

Classes of Verification Problems

|. k-safety Verification
Il. Interprocedural Program : e
b e 9 l11. Information-Flow Verification
Verification

Classes of Verification Problems

Will talk about each of these in turn

|. k-safety Verification

ll. Interprocedural Program
Verification

1. Information-Flow Verification

12

Classes of Verification Problems

Will talk about each of these in turn

|. k-safety Verification

ll. Interprocedural Program
Verification

I1l. Information-Flow Verification

Will talk about the third most detail
(Extra slides on the second)

12

Classes of Verification Problems

|. k-safety Verification

ll. Interprocedural Program
Verification

1. Information-Flow Verification

13 Cartesian Hoare Logic, Sousa and Dillig, PLDI"16

Classes of Verification Problems

Brief note about formalisms used to model each class of problems

|. k-safety Verification

ll. Interprocedural Program
Verification

1. Information-Flow Verification

13 Cartesian Hoare Logic, Sousa and Dillig, PLDI"16

Classes of Verification Problems

Brief note about formalisms used to model each class of problems

|. k-safety Verification
Cartesian Hoare Logic

ll. Interprocedural Program
Verification

1. Information-Flow Verification

13 Cartesian Hoare Logic, Sousa and Dillig, PLDI"16

Classes of Verification Problems

Brief note about formalisms used to model each class of problems

|. k-safety Verification
Cartesian Hoare Logic

ll. Interprocedural Program

Verification
Constrained Horn Clauses

1. Information-Flow Verification

13 Cartesian Hoare Logic, Sousa and Dillig, PLDI"16

Classes of Verification Problems

Brief note about formalisms used to model each class of problems

|. k-safety Verification
Cartesian Hoare Logic

ll. Interprocedural Program

Verification
Constrained Horn Clauses Constrained Horn Clauses

1. Information-Flow Verification

13 Cartesian Hoare Logic, Sousa and Dillig, PLDI"16

Classes of Verification Problems

Brief note about formalisms used to model each class of problems

|. k-safety Verification
Cartesian Hoare Logic

ll. Interprocedural Program

Verification
Constrained Horn Clauses Constrained Horn Clauses

1. Information-Flow Verification

» No (specialized) heap modeling
« No higher-order functions
. Static call graph

13 Cartesian Hoare Logic, Sousa and Dillig, PLDI"16

|. k-safety Verification

intraprocedural ity)
programs [jp—]
information
flow
Single-procedure programs Properties over k copies of

(may contain loops) the same program

14

Relational Invariants

Relate the k program copies at intermediate points

ON

ON
& &

Relational Invariants

Relate the k program copies at intermediate points

ON

ON
&5

X1

ON

i

pre

Relational Invariants

Relate the k program copies at intermediate points

X2

ON

-

Xk

ZON

-

Relational Invariants

Relate the k program copies at intermediate points

pre
X1 X Xk

LONEIPON ON

& (&

. post

Relational Invariants

Relate the k program copies at intermediate points

pre
X1 X Xk

LONEIPON ON

y1 V2 Vk
. post

How to leverage and how (where) to infer them for scalable verification?

15

Symmetry and Synchrony

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony

How to leverage relational properties?

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

@ﬁ@ @ﬁ@

Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties lead to redundant subtasks, so prune them

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties Iead to redundant subtasks, so prune them

ity

verlflcatlon subtasks

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties Iead to redundant subtasks, so prune them

@,@ @,@
@ @

D (@ @' @,

Property symmetry 1€%2

verification subtasks

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties Iead to redundant subtasks, so prune them

g@

1€>2

@‘ same subtask
verification subtasks

Property symmetry 1€%2

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties lead to redundant subtasks, so prune them

Lo gt

Property symmetry 1€%2

verification subtasks

How to infer relational properties?

L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony
s and Symmetry in Relational Verification, CAV'18

Symmetry and Synchrony

How to leverage relational properties?
Symmetries in properties lead to redundant subtasks, so prune them

PO A,

Property symmetry 1€%2

1€>2

same subtask
verlflcatlon subtasks

How to infer relational properties?
Use synchrony technigue for loops for fewer and simpler invariants

§t) §t) §t) @D L. Pick, G. Fedyukovich, A. Gupta. Exploiting Synchrony

s and Symmetry in Relational Verification, CAV'18

k-safety Verification

invariant discoverer
verification subproblems

ﬁ;'nm 115% ind. inv. 1,7

SMT Solver

checker

program

property ¢

£

17

k-safety Verification

synchrony

$og L

P

invariant discoverer
verification subproblems

ﬁ;'nm 115% ind. inv. 1,7

SMT Solver

checker

program

property ¢

£

P

17

k-safety Verification

synchrony symmetry

PEE B

P

invariant discoverer
verification subproblems

ﬁ;'nm 115% ind. inv. 1,7

SMT Solver

checker

program

property ¢

£

P

17

synchrony symmetry

L &
a 4

Synchrony and symmetry help infer fewer, simpler relational invariants,
leading to the elimination of redundant verification subtasks.

50 ...
-

18

synchrony symmetry

L &
a 4

Synchrony and symmetry help infer fewer, simpler relational invariants,

leading to the elimination of redundant verification subtasks.
Solved 11/14 Java benchmarks in ~4 mins each, timed out in 1 hr otherwise

Achieved up to ~21 times speedup on the remaining 117

A O .
checker

- C P

18

synchrony symmetry

L &
a 4

Synchrony and symmetry help infer fewer, simpler relational invariants,

leading to the elimination of redundant verification subtasks.
Solved 11/14 Java benchmarks in ~4 mins each, timed out in 1 hr otherwise

Achieved up to ~21 times speedup on the remaining 117
(Largest benchmark ~200 LOC)

A O .
checker

- C P

18

. Interprocedural Program Verification

interprocedural
programs

safety

properties

Multiple-procedure programs General safety properties
(may contain recursion) (hoisted to entry procedure)

19

Interprocedural Programs

Example call graph

Interproceadura
rograms 0 @
Have call graphs o ° @

Interprocedural Programs

safety
asserts property

Example call graph

interprocedural
programs

Have call graphs

20

Interprocedural Programs

safety
asserts property

Example call graph

interprocedural
programs

Have call graphs

20

Interprocedural Programs

safety
asserts property

Example call graph

interprocedural
programs

Have call graphs

Will derive and use over- and under-approximate procedure summaries

20

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

rn
ol
ORORO

21

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

@ environment
‘ aE

21

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

@ environment
» summary
‘ @ inference

21

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

@ environment
» summary
‘ @ inference

to handle mutual recursion

21

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

@ environment
»summary F . k
‘ @ inference

to handle mutual recursion

environment

‘--~

24 .
4 L\
[1
* odd
\O [}
A ¢

2 o’

21

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

@ environment

to handle mutual recursion

environment

@ * summary
1 inference
: odd

summary
inference

' even !

21

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

@ environment
summary S
‘ @ inference

to handle mutual recursion and scale verification

environment

‘--~

24 .
4 L\
[1
* odd
\O [}
A ¢

2 o’

summary

. ': even 3'
inference ‘ ‘

21

Modular Verification of Interprocedural Programs

Infer and use procedure summaries (invariants)

@ environment
summary S
‘ @ inference

to handle mutual recursion and scale verification

environment
@ summary a * checker

. Leven !
inference ‘ ' A

L 4 LN 1
4 L\ | [} |
' 1 1} ’ 1}
1 dd] L 4
' O) \ . \
A ’
. Vg

21

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference f

1 4

[|

: - + h

|} /] L} 1

A Y) ’

‘Q ¢' ‘Q ¢'
Sam*™ Sam*™

22

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference f
=K). W SMT Solver

4)})}
| 1 [| 1
] 1] h 1
|} /] L}]
s ’ A ’
‘Q ¢' ‘Q ¢'
Sam*™ Sam*™

22

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference f
=K). W SMT Solver

4)})}
| 1 [| 1
] 1] h 1
|} /] L}]
s ’ A ’
‘Q ¢’ ‘Q ¢’
Sam*™ Sam*™

22

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

22

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable

summary
inference

22

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable

summary
inference

property information abstracted away 9

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable

summary
inference

least relevant (true)

¢ LN
. |
[1
1 f 1
. [
\ ’
s 4 ¢ 1N Y,)
[1 ! |
1 g | 1 h |

! ’ | !

<, 24 \ Y4

p 2
’ ._‘¢

property information abstracted away 9

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable

summary
inference

least relevant (true)

Y 4 A 3
I 4 A Y
| 1
| f 1
| | |
A § q
* ’ V4 A) V4 A) Vs L} ¢ L}
[L} [1 [L} [1
1 g 1 1 h] 1 g 1 1 h 1
L} J L} L L} ’ '} ’
., ¢ o \, 4 \ V4

~
v ’ \N-" ~-" ~-"

property information abstracted away 9

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable

summary
inference

least relevant (true)

. . P .
’) ’ 2y
I 1 I 1
Cof N v f
' I ' I
. ’ . ’
. P

* ’ Y 4 A) Y 4 . Y 4 A ¥ 4)
[1 [1 I 1 I 1
v g 4 ho: v g ! 4 ho:
| § J | § J | § L | § J

\, ' 4 Y 4 \, L 4 \ Y 4

L 3
v ’ \N-" ~-" ~-"

property information abstracted away 9

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable

summary
inference

least relevant (true)

P2 . e .
. 1} . 1Y
[} 1 [} 1
1 f 1] f (]
|}] |} /]
1} 4 L} ’
Vs N ¢

$ Y 4) Y 4 ‘ Y 4) Y 4 ‘
[1 [1 I 1 I 1
1 g 1 1 h 1 1 g 1 1 h 1
| } L | } q | } J | } q

<, 2 4 \ Y 4 \, ' 4 \ Y 4

& &

Y 4 ~_‘¢ ._,¢ ~ o L 4

property information abstracted away o0 no scalability benefits from abstraction

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable least scalable

summary
inference

least relevant (true)

P2 . e .
. 1} . 1Y
[} 1 [} 1
1 f 1] f (]
|}] |} /]
1} 4 L} ’
Vs N ¢

$ Y 4) Y 4 ‘ Y 4) Y 4 ‘
[1 [1 I 1 I 1
1 g 1 1 h 1 1 g 1 1 h 1
| } L | } q | } J | } q

<, 2 4 \ Y 4 \, ' 4 \ Y 4

& &

Y 4 ~_‘¢ ._,¢ ~ o L 4

property information abstracted away o0 no scalability benefits from abstraction

Scalable Inference vs. Relevance of Invariants

What environment?

summary
inference

SMT Solver

most scalable least scalable

summary summary
inference i inference

most relevant

" "N

least relevant

" "N

~-‘ m - ~-‘

property information abstracted away o0 no scalability benefits from abstraction

-m -

Bounded Environments

Unbounded Procedure Summaries from
23 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

Unbounded Procedure Summaries from
23 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

Unbounded Procedure Summaries from
23 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

3-bounded environment

Unbounded Procedure Summaries from
23 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

3-bounded environment

Unbounded Procedure Summaries from
23 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

3-bounded environment 2-bounded environment

Unbounded Procedure Summaries from
23 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

3-bounded environment 2-bounded environment

use summaries
for callees of
procedures

within bound \

Unbounded Procedure Summaries from
03 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

3-bounded environment 2-bounded environment

use summaries
@ I abstract above bound

for callees of
procedures

within bound \

Unbounded Procedure Summaries from
03 Bounded Environments, Pick et al., VMCAI'21

Bounded Environments

3-bounded environment 2-bounded environment

use summaries
@ I abstract above bound

for callees of
procedures

within bound \

Larger bound, more relevant/less scalable Unbounded Procedure Summaries from
23 Bounded Environments, Pick et al., VMCAI'21

Interprocedural Program Verification

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

A

property ¢

P

Interprocedural Program Verification

Bounded environments

program d(@db 6%3

property ¢

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

Interprocedural Program Verification

Bounded environments

invariant discoverer
verification subproblems

ﬁ;'nv. 115% ind. inv. 1,7

SMT Solver

checker

property ¢

Interprocedural Program Verification

Bounded environments

invariant discoverer
verification subproblems

ﬁ;'nv. 115% ind. inv. 1,7

property ¢

summaries
(ind. inv.) SMT Solver
:"I—l.s". :"1-2.\'.

checker

~~~~~~

24



Interprocedural Program Verification

To deal with mutual recursion, use environment-callee EC lemmas
Bounded environments

invariant discoverer
verification subproblems

ﬁ;'nv. 115% ind. inv. 1,7

program

property ¢

summaries
(ind. inv.) SMT Solver
:"I—l.s". :"1-2.\'.

checker

~~~~~~

25

Interprocedural Program Verification

To deal with mutual recursion, use environment-callee EC lemmas
Bounded environments

+ EC Lemma Template

invariant discoverer
verification subproblems

ﬁ;'nv. 115% ind. inv. 1,7

program

&P F0) = G(O)

property @

summaries
(ind. inv.) SMT Solver
:"I—l.s". :"1-2.\'.

checker

~~~~~~

25



Interprocedural Program Verification

To deal with mutual recursion, use environment-callee EC lemmas
Bounded environments

+ EC Lemma Template

invariant discoverer
verification subproblems

g ind. inv. Ilc% ind. inv. 1,7

SMT Solver

Ll checker

program

&P F0) = G(O)

property ¢

summaries
(md |nv)

25



Experimental Results

Implemented in tool called Clover built on top of FregHorn constrained Horn clause solver
[Fedyukovich et al., 2017]

1] Komuravelli et al., Formal Methods in Sys. Des."16
2] Hojjat and Rumer, FMCAD18

3] Champion et al., APLAS18
5.

2
4] Satake et al., 2019
5] Dietsch et al., HCVS/PERR"18

26



Experimental Results

Implemented in tool called Clover built on top of FregHorn constrained Horn clause solver

[Fedyukovich et al., 2017]

Real World (16)

Mutual
Recursion (46)

Total (163)

Clover (b=10) Spacer [1] Eldarica[2] Holce [3] PCSat [4] Ultimate [5]
CHC-Comp (101) 77

16
45

138

93

3
13

114

94

12
A

110

26

92 31 76
14 3 15
14 5 O

120 39 91

2.

] Champion et al., APLAS18
] Satake et al., 2019
] Dietsch et al., HCVS/PERR18

GED

1] Komuravelli et al., Formal Methods in Sys. Des."16

Hojjat and Rumer, FMCAD"18




Experimental Results

Implemented in tool called Clover built on top of FregHorn constrained Horn clause solver
[Fedyukovich et al., 2017]

Clover (b=10) Spacer [1] Eldarica[2] Holce [3] PCSat [4] Ultimate [5]

CHC-Comp (101) 77 93 94 92 81 76
Real World (16) 16 8 12 14 3 15
Mutual 45 13 4 14 5 O

Recursion (46)

Total (163) 138 114 10 120 89 91

Comparable to other tools in general (timeout 10 min)

A

] Komuravelli et al., Formal Methods in Sys. Des."16
] Hojjat and Rumer, FMCAD18

] Champion et al., APLAS18
| Satake et al., 2019

] Dietsch et al., HCVS/PERR18

UlA W N

26



Experimental Results

Implemented in tool called Clover built on top of FregHorn constrained Horn clause solver
[Fedyukovich et al., 2017]

Clover (b=10) Spacer [1] Eldarica[2] Holce [3] PCSat [4] Ultimate [5]

CHC-Comp (101) 77 93 94 92 81 76
Real World (16) 16 8 12 14 3 15
Mutual 45 13 4 14 5 O

Recursion (46)

Total (163) 138 114 10 120 89 91

Comparable to other tools in general (timeout 10 min), excels at mutual recursion

A

] Komuravelli et al., Formal Methods in Sys. Des."16
] Hojjat and Rumer, FMCAD18

] Champion et al., APLAS18
| Satake et al., 2019

] Dietsch et al., HCVS/PERR18

UlA W N

26



Experimental Results



Experimental Results

EC Lemmas are useful!

Clover (b=10) Clover (b=10),
no EC lemmas

CHC-Comp 77 /2
Real World 16 16
Mutual 45 5
Recursion

Total 138 93

27



Experimental Results

EC Lemmas are useful! Different bounds help

for different benchmark sets
Clover (b=10) Clover (b=10),

no EC lemmas

O 100 [
CHC-Comp 77 /2 O

O

(dp)
Real World 16 16 %’ =0 |

=
Mutual 45 5 S
Recursion =

Ne!
Total 138 93 NS

27



Experimental Results

EC Lemmas are useful! Different bounds help

for different benchmark sets
Clover (b=10) Clover (b=10),

no EC lemmas

O 100 [
CHC-Comp 77 /2 O

O

(dp)
Real World 16 16 %’ =0 |

=
Mutual 45 5 S
Recursion =

Ne!
Total 138 93 NS

bound
e.g., bounds 7-9 were best

for Mutual Recursion

27



Related Work




Related Work

Constrained-Horn-Clause-Based
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des."16]
[McMillan, CAV"14]

[Hojjat and Rumer, FMCAD"18]
[Champion et al., APLAS18]

[Dietsch et al., EPTCS19]
[Grebenshchikov et al., PLDI"12]

[McMillan and Rybalchenko, 2013]

28



Related Work

Constrained-Horn-Clause-Based Program Analysis and Verification
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des."16]
[McMillan, CAV"14]
[Hojjat and Rumer, FMCAD"18]
[Champion et al., APLAS"18]
[Dietsch et al., EPTCS19]

[Grebenshchikov et al., PLDI"12]
[McMillan and Rybalchenko, 2013]

28



Related Work

Constrained-Horn-Clause-Based Program Analysis and Verification
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des."16]
[McMillan, CAV"14]
[Hojjat and Rumer, FMCAD"18]
[Champion et al., APLAS"18]
[Dietsch et al., EPTCS19]
[Grebenshchikov et al., PLDI"12]
[McMillan and Rybalchenko, 2013]

Abstract Interpretation

[Cousot and Cousot, IFIP'77]
[Cousot and Cousot, VMCAI'13]
[Fahndrich et al., FoVeOOS"10]

28



Related Work

Constrained-Horn-Clause-Based Program Analysis and Verification
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des."16]
[McMillan, CAV"14]
[Hojjat and Rumer, FMCAD"18]
[Champion et al., APLAS"18]
[Dietsch et al., EPTCS19]
[Grebenshchikov et al., PLDI"12]
[McMillan and Rybalchenko, 2013] [Reps et al., POPL'95]

[Ball and Rajamani, PASTE'O1]

Abstract Interpretation

[Cousot and Cousot, IFIP'77]
[Cousot and Cousot, VMCAI'13]
[Fahndrich et al., FoVeOOS"10]

Interprocedural Dataflow Analysis

28



Related Work

Constrained-Horn-Clause-Based Program Analysis and Verification
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des."16]
[McMillan, CAV"14]
[Hojjat and Rumer, FMCAD"18]
[Champion et al., APLAS"18]

Dietsch et al., EPTCS"19 ‘
[Gribfniﬁcﬁkiv ot al PLD]I'12] Interprocedural Dataflow Analysis

[McMillan and Rybalchenko, 2013] [Reps et al., POPL'95]
[Ball and Rajamani, PASTE'O1]

Abstract Interpretation

[Cousot and Cousot, IFIP'77]
[Cousot and Cousot, VMCAI'13]
[Fahndrich et al., FoVeOOS"10]

Summary Usage
[Godefroid et al., POPL10]

28



Related Work

Constrained-Horn-Clause-Based Program Analysis and Verification
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des."16]
[McMillan, CAV"14]
[Hojjat and Rumer, FMCAD"18]
[Champion et al., APLAS"18]

Dietsch et al., EPTCS"1 .
[Gribfﬁiﬁcﬁtkiv ot a,CiL?ﬂ,m Interprocedural Dataflow Analysis

[McMillan and Rybalchenko, 2013] [Reps et al., POPL'95]
[Ball and Rajamani, PASTE'O1]

Abstract Interpretation

[Cousot and Cousot, IFIP'77]
[Cousot and Cousot, VMCAI'13]
[Fahndrich et al., FoVeOOS"10]

Specification Inference

[Albargouthi et al., POPL"16] Summary Usage
[Alur et al., POPL'O5] [Godefroid et al., POPL10]

[Ammons et al., POPL'02]

28



Related Work

Constrained-Horn-Clause-Based Program Analysis and Verification
Program Verification

[Komuravelli et al., Formal Methods in Sys. Des."16]
[McMillan, CAV"14]
[Hojjat and Rumer, FMCAD"18]
[Champion et al., APLAS"18]

Dietsch et al., EPTCS"1 .
[Gribfﬁiﬁcﬁtkiv ot a,CiL?ﬂ,m Interprocedural Dataflow Analysis

[McMillan and Rybalchenko, 2013] [Reps et al., POPL'95]
[Ball and Rajamani, PASTE'O1]

Abstract Interpretation

[Cousot and Cousot, IFIP'77]
[Cousot and Cousot, VMCAI'13]
[Fahndrich et al., FoVeOOS"10]

Specification Inference

[Albargouthi et al., POPL"16] Summary Usage
[Alur et al., POPL'O5] [Godefroid et al., POPL10]

[Ammons et al., POPL'02]

No bounded environments or EC lemmas

28



l1l. Information Flow Checking for Interprocedural Programs

interprocedural
programs

+ information
flow

Multiple-procedure programs Information-flow security properties
(may contain recursion)

29



Information-flow properties




Information-flow properties

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:

30



Information-flow properties

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:
“High-security inputs do not leak information to low-security outputs.”

30




Information-flow properties

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:
“High-security inputs do not leak information to low-security outputs.”

High-security inputs shown in red

30



Information-flow properties

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:
“High-security inputs do not leak information to low-security outputs.”

High-security inputs shown in red

X1 V1

30



Information-flow properties

2-safety property relating 2 copies of the same program with equalities
on subsets of corresponding components, e.g., noninterference:
“High-security inputs do not leak information to low-security outputs.”

High-security inputs shown in red

30



Product Programs

safety

/k-safety.

Can turn into by constructing a product program

“property

property

Z1 W1 w2 22

v — — «— v

Secure information flow by self-composition, Barthe et al., CSFW’'04
Relational verification using product programs, Barthe et al., FM11

31



Product Programs

safety

/k-safety.

Can turn into by constructing a product program

“property

property

Z1 W1 w2 22

v — — «— v

Secure information flow by self-composition, Barthe et al., CSFW’'04
Relational verification using product programs, Barthe et al., FM11

31



Modular Product Programs

32 Modular product programs, Eilers et al., ESOP"18



Modular Product Programs

Labels denote input variables

32 Modular product programs, Eilers et al., ESOP"18



Modular Product Programs

b,b’

8in> 8in» 0>’ Pins My D51
-

32 Modular product programs, Eilers et al., ESOP"18

Labels denote input variables



Modular Product Programs

Activation variables b, b’ specify if copy is active

b,b’

8in> 8in» 0>’ Pins My D51
-

32 Modular product programs, Eilers et al., ESOP’18

Labels denote input variables



Modular Product Programs

Activation variables b, b’ specify if copy is active
bb’

Qins &ins DD h,,h!,b=false,b’ = true
—>

33 Modular product programs, Eilers et al., ESOP"18




Modular Product Programs

Activation variables b, b’ specify if copy is active
bb’

Qins &ins DD h,,h!,b=false,b’ = true
—>

33 Modular product programs, Eilers et al., ESOP"18




Modular Product Programs

Activation variables b, b’ specify if copy is active
bb’

Qins &ins DD h,,h!,b=false,b’ = true
—
fin> lin ]’” ]’” m ki, b = false,b’ = true

33 Modular product programs, Eilers et al., ESOP"18




Modular Product Programs

Activation variables b, b’ specify if copy is active
bb’

Qins &ins DD h,,h!,b=false,b’ = true
—
fin> lin ]’” ]’” m ki, b = false,b’ = true
@

33 Modular product programs, Eilers et al., ESOP"18




Modular Product Programs

Activation variables b, b’ specify if copy is active
b,b’

Zin> 8in» DD h,,h b=false,b’ = true
—
fin> i ]’” ]m m ki, b = false,b’ = true

Required user-provided annotations (which variables are high-/low-security?)

33 Modular product programs, Eilers et al., ESOP’18



Modular Product Programs

Activation variables b, b’ specify if copy is active
b,b’

Zin> 8in» DD h,,h b=false,b’ = true
—
fin> i ]’” ]m m ki, b = false,b’ = true

Required user-provided annotations (which variables are high-/low-security?)
Can we infer these invariants?

33 Modular product programs, Eilers et al., ESOP’18



Adapting Interprocedural Program Verification

Bounded environments
EC Lemma Template

product
program

£ |

invariant discoverer

property ¢

SMT Solver

checker

summaries
(ind. inv.)

34



Adapting Interprocedural Program Verification

Bounded environments
EC Lemma Template
Information-flow Templates

product
program

invariant discoverer

I specialized
inference
property ¢ z
ddgb. SMT Solver
summaries
L P
(ind. inv.) checker

34



Syntax-Guided Synthesis (SyGuS)

Specification Syntactic Restrictions R

Program/Summary P

Syntax-Guided Synthesis, Alur et al., FMCAD'13

35



Syntax-Guided Synthesis (SyGuS)

1P e[[R].Vi.Pu)ESQ)

Specification Syntactic Restrictions R

Program/Summary P

Syntax-Guided Synthesis, Alur et al., FMCAD'13

35



Syntax-Guided Synthesis (SyGuS)

1P e[[R].Vi.Pu)ESQ)

Specification Syntactic Restrictions R
can be provided by a grammar

Program/Summary P

Syntax-Guided Synthesis, Alur et al., FMCAD'13

35



Syntax-Guided Synthesis (SyGuS)

1P e[[R].Vi.Pu)ESQ)

can be prowded by a grammar
yntheS|zer

Program/Summary P

Syntax-Guided Synthesis, Alur et al., FMCAD'13

35



Information-Flow Summary Inference

. : 2
environment summary inference?

target 7

procedure

SMT Solver

36




Information-Flow Summary Inference

environment

target el
procedure

L 4
L4
4
 /

»: AL

~
~~~~~~~~~

summary inference?

SMT Solver

36

over-approximate summary

Information-Flow Summary Inference

. : 2
environment summary inference?

-
-~ . ~
-~ -~
. 1 I . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

SMT Solver

36

Information-Flow Summary Inference

. : 2
environment summary inference?

-
-~ . ~
-~ -~
. 1 I . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

SMT Solver

36

Information-Flow Summary Inference

. : 2
environment summary inference?

-
-~ . ~
-~ -~
. 1 I . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

36

Information-Flow Summary Inference

. : 2
environment summary inference?

- -
~ A ~
- -
. 1 [/ . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

Specification

‘ g'# over-approximates

over- approxmate summary

36

Information-Flow Summary Inference

. : 2
environment summary inference?

- -
~ A ~
- -
. 1 [/ . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

36

Information-Flow Summary Inference

. : 2
environment summary inference?

- -
~ A ~
- -
. 1 [/ . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

Synthesizer

SMT Solver

36

Information-Flow Summary Inference

. : 2
environment summary inference?

- -
~ A ~
- -
. 1 [/ . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

Specification

‘ g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

Synthesizer

SMT Solver

36

over- approxmate summary

Information-Flow Summary Inference

. : 2
environment summary inference?

- -
~ A ~
- -
. 1 [/ . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

Specification

‘ g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

Synthesizer

SMT Solver

36

over- approxmate summary

Information-Flow Summary Inference

. : 2
environment summary inference?

- -
~ A ~
- -
. 1 [/ . 1
] 1]

target 7

procedure

Syntax-Guided Synthesis (SyGuS)

Specification

‘ g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

Synthesizer

SMT Solver

36

over- approxmate summary

Information-Flow Summary Inference

. : 2
environment summary inference?

Guess-and-Check

target 7 Syntax-Guided Synthesis (SyGuS)

procedure

Specification

‘ g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

Synthesizer

SMT Solver

36

over- approxmate summary

Information-Flow Summary Inference

. : 2
environment summary inference?

-
1 4
-~
. 1 I

Guess-and-Check

target 7 Syntax-Guided Synthesis (SyGuS)

procedure

Specification

‘ g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

Synthesizer

- SMT Solver

36

over- approxmate summary

Information-Flow Summary Inference

i 2
environment summary inference?

target /
procedure
Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

Guess-and-Check
Syntax-Guided Synthesis (SyGuS)

Specification

‘ g'# over-approximates

Synthesizer

- SMT Solver

meets specification? over- approxmate summary

36

Information-Flow Summary Inference

. : 2
environment summary inference?

Guess-and-Check

target 7 Syntax-Guided Synthesis (SyGuS)

procedure

Specification

‘ g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

i bl SMT Solver

meets specification? over- approxmate summary

36

Information-Flow Summary Inference

. : 2
environment summary inference?

Guess-and-Check

target 7 Syntax-Guided Synthesis (SyGuS)

procedure

Specification

‘ g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

i S SMT Solver

meets specification? over- approxmate summary

36

Information-Flow Summary Inference

. : 2
environment summary inference?

Guess-and-Check

target 7 Syntax-Guided Synthesis (SyGuS)

procedure

Specification

. g'# over-approximates

Syntactic Restriction

Grammar template (Grammar)
eq .:=x=x'|ali] =ali]|...

guess - PR
x=x'=2>z=7¢ ey
SMT Solver D

_meets specification? over- approxmate summary

36

environment

target -

procedure
t"-. . e —T .
1,5~ , 's‘\ 1,8 's‘\
" Ay . n Y]]
n | & | b n J h b
- " - "
Grammar template?

summary inference

Guess-and-Check

Syntax-Guided Synthesis (SyGuS)

Specification

\ Y 1

l 4
L 4

Syntactic Restriction
(Grammar)

eq .:=x=x'|ali] =ali]|...

SMT Solver _

37

g} over-approximates

Inferring Summaries with SyGuS

‘‘‘‘‘

L 4
CSam"

over-approximate summary

Inferring Summaries with SyGuS

summary inference

environment

Guess-and-Check

target 7 Syntax-Guided Synthesis (SyGuS)
procedure
Specification
AT AT 9 "9} over-approximates
Syntactic Restriction
Grammar template? (Grammar)
Will talk about three kinds eq :=x=x'|ali] =a'i]]...

SMT Solver _ "':~9""‘~-'»:::
oo . ? et e '
_meets specification over-approximate summary

37

Inferring Summaries with SyGuS

summary inference

environment

Guess-and-Check
target / Syntax-Guided Synthesis (SyGuS)

procedure

~~~~~~~~~~~~~~

Syntactic Restriction
Grammar template? (Grammar)
Will talk about three kinds eq :=x=x'|ali] =a'i]]...

Quantifier-Free guess - LT
x=x'=2>z=27 a0
oo "“g "“g N
Quantified Array SMT Solver N
meets specitication? over-approximate summary

Property-Directed

37



Grammar Templates



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

W R

activation . " output
. input equalities .
variables equality

Quantifier-free

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

AN NV D N . B

quantified range  activation equalities cell
indices variables property

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

pHC o Y ——

quantified range  activation equalities cell
2,7 indices variables property

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

range activation equalities cell

/

2,2 variables property

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

X, X5 .Y 00" g ,1.10Li<y ABA:} =>D

range activation equalities cell

/

2,2 variables property

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

LY YPU G 0<i <y /\/\[::':J

range activation equalities cell

/

2,2 variables property

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

cority i fogicylalparali=iny=y]s( ]

range activation equalities cell

/

2,2 variables property

38



Grammar Templates

Insight:
information flow involves equalities on subsets of corresponding components

Quantifier-free

activation output

input equalities

2,7 variables equality

Quantified Array

oy i [0 < i<yl a b il = 211

range activation equalities cell

/

2,2 variables property

38



Property-Directed Summaries




Property-Directed Summaries




Property-Directed Summaries

6\ 62
6 G\




Property-Directed Summaries

( :> asserts
environment
< :> < :> 8ins gi,n’ b’b/
09 @9 ' o
Zours out




Property-Directed Summaries

information
@ asserts captured in
environment
| @ G 8ins gi,n’ b’b/
N\
09 ©EI\EY

o fr=nv=rjafi=z

activation . - output
. input equalities .
variables equalities

39



Property-Directed Summaries

information
@ asserts captured in
environment
| @ G 8ins gi,n’ b’b/
N\
09 ©EI\EY

“aomen | ALAVA =X Ay =] (z=2
environment

activation . - output
. input equalities .
variables equalities

39



Property-Directed Summaries

information
@ asserts captured in
environment
| @ G 8ins gi,n’ b’b/
N\
09 ©EI\EY

“aomen | ALAVA =X Ay =] (z=2
environment

activation . output

. input equalities .
variables PUL &4 equalities
39 Useful for handling declassification




Declassification

Non-interference alone can be too restrictive

40



Declassification

Non-interference alone can be too restrictive

>

high-security: input

40



Declassification

Non-interference alone can be too restrictive

>

high-security: input — |ow-security: correct?

40



Declassification

Non-interference alone can be too restrictive
Can declassify to allow some leakage

>

high-security: input — |ow-security: correct?

40



Declassification

Non-interference alone can be too restrictive
Can declassify to allow some leakage

- low-security: correct?

declassify(input = password)
T e

high-security: input

40



Declassification

Non-interference alone can be too restrictive
Can declassify to allow some leakage

Password recognizer

>

—|ow-security: correct?
declassify(input = password)

high-security: input

Declassification can be captured in the environment

40



Experimental Results

Implemented in tool called Flower built on top of Clover

1] SMT-based model-checking for recursive
orograms, Komuravelli et al. FMSD."16
2] Cartesian Hoare Logic, Sousa and Dillig, PLDI16

41



Experimental Results

Implemented in tool called Flower built on top of Clover

B Verified || Timeout (10min) I Unknown

© 30
c 24
-
e
S 18
an
o 12
g
c 0
>
pd

O

Flower Spacer|[1] Descartes|[2]
Tool

1] SMT-based model-checking for recursive
orograms, Komuravelli et al. FMSD."16
2] Cartesian Hoare Logic, Sousa and Dillig, PLDI16

41



Experimental Results

Implemented in tool called Flower built on top of Clover

B Verified || Timeout (10min) I Unknown

© 30
c 24
-
e
S 18
an
o 12
g
c 0
>
pd

O

Flower Spacer|[1] Descartes|[2]
Tool

1] SMT-based model-checking for recursive

Unknown indicates inferred invariants too weak orograms, Komuravelli et al. FMSD."16
2] Cartesian Hoare Logic, Sousa and Dillig, PLDI16

41



Experimental Results

Implemented in tool called Flower built on top of Clover

600
B Verified || Timeout (10min) I Unknown
30 450
%) % 300 .............................................................................................................................
c 24 £
G . 150
o 0 — o
S 12 2 4
2 Array Size
c 0
>
Z
O
Flower Spacer|[1] Descartes|[2]
Tool

1] SMT-based model-checking for recursive

Unknown indicates inferred invariants too weak orograms, Komuravelli et al. FMSD."16
2] Cartesian Hoare Logic, Sousa and Dillig, PLDI16

41



Experimental Results

Implemented in tool called Flower built on top of Clover

600
B Verified || Timeout (10min) I Unknown
30 450
p— 300
c 24 £
S 150
< 18
s o ——
o 12 2 4
2 Array Size
o :
§, Parametrizable benchmark shows
0O array size does not affect Flower’s performance
Flower Spacer[1] Descartes[2] because of quantified template
Tool

1] SMT-based model-checking for recursive

Unknown indicates inferred invariants too weak orograms, Komuravelli et al. FMSD."16
2] Cartesian Hoare Logic, Sousa and Dillig, PLDI16

41



Related Work

Relational Program Verification Information-Flow Checking

42



Related Work

Relational Program Verification Information-Flow Checking

Non-modular approaches

Barthe et al., CSFW'04] [Terauchi and Aiken, SAS'O5] [Banerjee et al., FSTTCS"16]
Barthe et al., FM"11] [Sousa and Dillig, PLDI"16] [Beringer, ITP11]

42



Related Work

Relational Program Verification Information-Flow Checking

Non-modular approaches
Barthe et al., CSFW'04] [Terauchi and Aiken, SAS'O5] [Banerjee et al., FSTTCS"16]
Barthe et al., FM"11] [Sousa and Dillig, PLDI"16] [Beringer, ITP11]

Modular, non-automated

[Eilers et al., ESOP"18]

42



Related Work

Relational Program Verification Information-Flow Checking

Non-modular approaches
Barthe et al., CSFW'04] [Terauchi and Aiken, SAS'O5] [Banerjee et al., FSTTCS"16]
Barthe et al., FM"11] [Sousa and Dillig, PLDI"16] [Beringer, ITP11]

Modular, non-automated Security-Type Systems

[Eilers et al., ESOP"18] [Denning and Denning, Commun. ACM, 1977]
[Volpano et al., 1996]

42



Related Work

Relational Program Verification Information-Flow Checking

Non-modular approaches
Barthe et al., CSFW'04] [Terauchi and Aiken, SAS'O5] [Banerjee et al., FSTTCS"16]
Barthe et al., FM"11] [Sousa and Dillig, PLDI"16] [Beringer, ITP11]

Modular, non-automated Security-Type Systems

[Eilers et al., ESOP"18] [Denning and Denning, Commun. ACM, 1977]
[Volpano et al., 1996]

Dynamic Taint Analysis
[Sarwar et al., SECRYPT"13]

42



Related Work

Relational Program Verification Information-Flow Checking

Non-modular approaches
Barthe et al., CSFW'04] [Terauchi and Aiken, SAS'O5] [Banerjee et al., FSTTCS"16]
Barthe et al., FM"11] [Sousa and Dillig, PLDI"16] [Beringer, ITP11]

Modular, non-automated Security-Type Systems

[Eilers et al., ESOP"18] [Denning and Denning, Commun. ACM, 1977]
[Volpano et al., 1996]

Dynamic Taint Analysis

Quantified Array Invariants
[Fedyukovich et al., CAV'19]

42



Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability

 relevance
program dégb invariant discoverer

verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

property ¢

£

43



Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability
e relevance

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

property ¢

£

44



Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability
synchrony e relevance

$og L

P

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

property ¢

£

44



Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability
synchrony symmetry e relevance

PEE B

P

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

property ¢

£

44



Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability
e relevance

Bounded environments

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

EC Lemma Template

P

property ¢

£

45



Structure and Syntax - performance

Structural info about programs and properties can help with: « scalability
e relevance

invariant discoverer
verification subproblems

ﬁ;'nv. 11?[% ind. inv. 1,7

SMT Solver

checker

program

Information-flow Templates

P

property ¢

£

46



Contributions

How to exploit structure of both programs and properties
to infer and leverage invariants that improve scalability and performance
in SMT-based automated verification.

47



Future Work

Symmetry-breaking for

e L. Constrained Horn Clauses
|. k-safety Verification

Cartesian Hoare Logic [2]

ll. Interprocedural Program

Verification
Constrained Horn Clauses Constrained Horn Clauses

I1l. Information-Flow Verification

Handle heaps: Constrained Horn Clauses + heaps [1]

[1] Towards an SMT-Lib Theory of Heap, Esen and Rummer, 1JCAR'20
48 [2] Cartesian Hoare Logic, Sousa and Dillig, PLDI"16



Extra slides



Invariants

How to make it easy to infer relational properties with symmetries?

Invariant

synthesizer

50



Invariants

How to make it easy to infer relational properties with symmetries?

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

iInvariant
synthesizer

50



Invariants

How to make it easy to infer relational properties with symmetries?

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

e

Invariant
synthesizer

50



Invariants

How to make it easy to infer relational properties with symmetries?

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

e

iInvariant
synthesizer

OO0 OO0

infer simpler relational invariants
that are more likely to have symmetries

50



Invariants

How to make it easy to infer relational properties with symmetries?

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

iInvariant
synthesizer

infer simpler relational invariants
that are more likely to have symmetries

50



Invariants

How to make it easy to infer relational properties with symmetries?

synchronize (align) structurally similar parts
(e.g., control-flow graph nodes)

iInvariant
synthesizer

_O.f
O
1o
_O.f

infer simpler relational invariants
that are more likely to have symmetries

50



Synchrony for Loops

How to make it easy to infer relational loop invariants?

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]



Synchrony for Loops

How to make it easy to infer relational loop invariants?

|[Barthe et al., 2011]

51 [Sousa and Dillig, 2016]



Synchrony for Loops

How to make it easy to infer relational loop invariants?

| Iterations

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]



Synchrony for Loops

How to make it easy to infer relational loop invariants?

I |terat|ons j |terat|ons

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]



Synchrony for Loops

How to make it easy to infer relational loop invariants?

I |terat|ons j |terat|ons

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]



Synchrony for Loops

How to make it easy to infer relational loop invariants?

et - "

I |terat|ons j |terat|ons

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]



Synchrony for Loops

How to make it easy to infer relational loop invariants?

e~ o

I |terat|ons j |terat|ons

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]



Synchrony for Loops

How to make it easy to infer relational loop invariants?

e~ o

I |terat|ons j |terat|ons

Use one simple relational loop invariant per set of “lockstep” loops.

|[Barthe et al., 2011]
51 [Sousa and Dillig, 2016]



Maximal Lockstep Loop Detection

Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:

5 [Pick et al., 2018]



Maximal Lockstep Loop Detection

Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:
[ and

5 [Pick et al., 2018]



Maximal Lockstep Loop Detection

Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:

I and (O:x orO:x orO:x or‘:X) One loop terminated

5 [Pick et al., 2018]



Maximal Lockstep Loop Detection

Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:

I and (O:x or()tx orO:x or‘:X) One loop terminated
‘ implies

5 [Pick et al., 2018]



Maximal Lockstep Loop Detection

Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:

I and (():x orO:x orQ:x orO:X) One loop terminated

‘ implies
C):x and O:x and Q:x and O:x All loops have terminated

5 [Pick et al., 2018]



Maximal Lockstep Loop Detection

Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:

I and (O:x orO:x oer or@X) One loop terminated

‘ implies
O:x and Q:x and Q:x and Qx All loops have terminated

Ask as SMT query, and use model to partition

52 [PICI( et al., 2018]



Maximal Lockstep Loop Detection

Synthesize simple relational invariant /, then do partition-refinement:

At each step, ask:

I and (O:x orO:x or()fx or@X) One loop terminated

‘ implies
O:x and O:x and Qx and Qx All loops have terminated

Ask as SMT query, and use model to partition

Different number of iterations

o O = OO O

52 [PICI( et al., 2018]



Summary Inference

environment
summary

/ @ inference?

target procedure o TR

4 A )

53



Summary Inference

environment

summary
/ @ inference?

target procedure

SMT Solver

53



Summary Inference

environment

7

target procedure o TR

4 A )

summary
inference?

SMT Solver

: even | over-approximate summary

-, 4
N

53



Summary Inference

environment

7

summary

\ .
{ aven s Over-approximate summary
inference? /

target procedure  ,-Y-, SMT Solver
+ odd .
N * aven | under-approximate summary

53



Summary Inference

example: y « 2x + 2

environment

7

target procedure o TR

summary
inference?

SMT Solver

~--v : even

N\ .
_even ! OVer-approximate summary

h under-approximate summary

1
]

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

7

target procedure o TR

4 A )

summary
inference?

SMT Solver
h under-approximate summary

~.ov ' even
1 q

N\ .
_even ! OVer-approximate summary

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

7

target procedure LN

24 s

summary
inference?

SMT Solver
h under-approximate summary

Te-t ' even
| § ’

A\ :
even). over-approximate summary
S x>0=>y >x

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ |nference. N ” X > O = y’ > X
implied by actual semantics
target procedure RN SMT Solver
+ odd .
N * aven | under-approximate summary

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ |nference. N ” X > O = y’ > X
implied by actual semantics
target procedure RN SMT Solver
+ odd .
N * aven | under-approximate summary

A x=0Ay =2

53



Summary Inference

example: y « 2x + 2
y =2x+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ |nference. N ” X > O = y’ > X
implied by actual semantics
target procedure  ,-%-( SMT Solver
+ odd .
N * aven | under-approximate summary

A S x:O/\y/zz
implies actual semantics

53



Summary Inference

example: y « 2x + 2
y =2x4+2

environment

\ .
summary even : OVer-approximate summary
/

: ? ;
/ @ inference? .~ s x>0=>y9>x
implied by actual semantics
target procedure  ,-%-( SMT Solver
+ odd .
N * aven | under-approximate summary

\~-—" X:O/\y/zz
implies actual semantics

Will make four SMT queries, over- and under-approximating both environment and target procedure

53



Over-Approximate Summary Inference

summary inference

SMT Solver




Over-Approximate Summary Inference

summary inference

SMT Solver




Over-Approximate Summary Inference

over-approximate environment

/ summary inference

SMT Solver

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

summary inference

encode as

SMT Solver

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

summary inference

encode as

SMT Solver

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

summary inference

encode as

>\
EAF

over-over query

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

summary inference

encode as

// \\
// \\
=TS
\‘\ ' ¢ ) 2 ‘ /’,“
\ .l ) /»
\ . odd
. "
‘~ L s 4 5
m .
encode as

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

summary inference

X

encode as Interpolant

'
v '
v even !
3 ’
\ ¢

—

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

summary inference

encode as

Separates target from environment

encode as

— _—

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

_—

summary inference Interpa\lalgt

encode as

EAP SMT Solver
over-over query

Separates target from environment

encode as

over-approximate target

54



Over-Approximate Summary Inference

over-approximate environment

summary inference

encode as

%

EAP SMT Solver
over-over query

P

Separates target from environment

v

encode as

over-approximate target Try to get less general summary

54



Over-Approximate Summary Inference

summary inference

encode as Interpolant

x Interpolant g

'
v '
v even !
3 ’
\ ¢

v

Separates target from environment

over-approximate target

55



Over-Approximate Summary Inference

under-approximate environment

summary inference

encode as Interpolant

x Interpolant g

’
y '
» EVEen !
Y ’

% ’

v

Separates target from environment

over-approximate target

55



Over-Approximate Summary Inference

under-approximate environment

summary inference

encode as Interpolant

x Interpolant g

y ) 3
’ ) )
I 1
‘ , even !
.
AN o

ENANP SMT Solver
under-over query

v

Separates target from environment

encode as

over-approximate target

55



Under-Approximate Summary Inference

summary inference

SMT Solver

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

SMT Solver

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

@ * SMT Solver

under-approximate target

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

encode as

SMT Solver

under-approximate target

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

encode as

SMT Solver

encode as

under-approximate target

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

encode as

SMT Solver

under-under query

encode as

under-approximate target

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

encode as

%

EAP

under-under query

N

P

encode as

under-approximate target

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

encode as

%

EAP

under-under query

N

P

encode as

under-approximate target

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

encode as

%

EAP

under-under query

P’ v

PR

I |
. even
encode as . y

under-approximate target L . .
Under-approximation must occur in the environment,

so worth remembering

56



Under-Approximate Summary Inference

under-approximate environment

summary inference

encode as

%

EAP

under-under query

P’ v

PR

I |
. even
encode as . y

under-approximate target L . .
Under-approximation must occur in the environment,

so worth remembering

56



Under-Approximate Summary Inference

under-approximate environment

. Try for possibly-less-relevant summary
summary inference

encode as

%

EAP

under-under query

N

P

q
I |
. even !
encode as ' y

under-approximate target L . .
Under-approximation must occur in the environment,

so worth remembering

56



Under-Approximate Summary Inference

summary inference

encode as

encode as

over-approximate target

57



Under-Approximate Summary Inference

over-approximate environment

summary inference

encode as

encode as

over-approximate target

57



Under-Approximate Summary Inference

over-approximate environment

summary inference

encode as

ENANP SMT Solver
over-under query

encode as

over-approximate target

57



Under-Approximate Summary Inference

over-approximate environment

summary inference

encode as

ENANP SMT Solver
over-under query

v

PR

I |
. even
encode as . y

over-approximate target . . . .
Under-approximation may occur in the environment,

so worth remembering

57



Mutual Recursion



Mutual Recursion

@ Unfolding: @

\
‘__
L
t' A g
’ |\
1
[ |
' odd
s q
Y 4
P 4



Mutual Recursion

@ Unfolding: @

L 3
LT
l' .
1
. odd
s ’
\~__ !

How much to unfold?

58



Mutual Recursion

@ Unfolding: @

S"-.~‘

. odd

\\~._ "

How much to unfold?

Can’t do induction directly on even

58



Mutual Recursion

@ Unfolding: @ Inlining:

S"-.~‘

. odd

\\~._ "

How much to unfold?

Can’t do induction directly on even

58



Mutual Recursion

@ Unfolding: @ Inlining:
e @ No summary for odd

I ) 3

S"-.~‘

. odd

\\~._ "

How much to unfold?

Can’t do induction directly on even

58



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

= property about target procedure

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

= property about target procedure

SMT Solver

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

= property about target procedure

SMT Solver

x EC lemma valid, so learn it

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma

property about callee in bounded environment

= property about target procedure

SMT Solver

x EC lemma valid, so learn it

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma
Vx,y.oddx) =y=> (y< (1 +x) mod 2 =0)
“odd’s output is always odd”

= property about target procedure

SMT Solver

x EC lemma valid, so learn it

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma
Vx,y.oddx) =y=> (y< (1 +x) mod 2 =0)

“odd’s output is always odd”
= Vw,z.even(w) =z= (z < w mod 2 = 0)

“Implies even’s output is always even”

SMT Solver

x EC lemma valid, so learn it

59



Environment-Callee (EC) Lemmas

Express relationships between summaries of procedures on the same call path in a program

EC Lemma Learner

Possible EC Lemma
Vx,y.oddx) =y=> (y< (1 +x) mod 2 =0)

“odd’s output is always odd”
= Vw,z.even(w) =z= (z < w mod 2 = 0)

“Implies even’s output is always even”

SMT Solver
x EC lemma valid, so learn it V

learn: “odd’s output always being odd implies that even'’s output is always even”

59



